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Abstract. In this paper, we develop a new approach for analyzing DNA
sequences in order to detect regions with similar nucleotide composi-
tion. Our algorithm, which we call composition alignment or, more
whimsically, scrambled alignment, employs the mechanisms of string
matching and string comparison yet avoids the overdependence of those
methods on position-by-position matching. In composition alignment, we
extend the matching concept to composition matching. Two strings have
a composition match if their lengths are equal and they have the same
nucleotide content.
We define the composition alignment problem and give a dynamic pro-
gramming solution. We explore several composition match weighting
functions and show that composition alignment with one class of these
can be computed in O(nm) time, the same as for standard alignment. We
discuss statistical properties of composition alignment scores and demon-
strate the ability of the algorithm to detect regions of similar composition
in eukaryotic promoter sequences in the absence of detectable similarity
through standard alignment.

1 Introduction

Most algorithms which characterize DNA functional sites concentrate on iden-
tifying position-specific patterns, such as consensus patterns or weight-matrix-
based profiles. Each is a string P = p1p2 · · · pk in which pi is specified as either a
single character or a choice (weighted or unweighted) of characters. The data for
a pattern are typically collected from multiple known occurrences of the func-
tional site. Well known examples include the TATA box, a frequent component
of the eukaryotic gene promoter, where transcription from DNA to RNA starts
[9] and the weight matrices used to describe transcription binding sites in the
TRANSFAC database [16].

Often, position-specific patterns have low selectivity. That is, when used to
search for unknown occurrences, they yield many non-functional sites. This, in
part, is due to the nature of the patterns which are frequently short and degen-
erate (more than one letter choice at some positions) making random matching
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a relatively common event. A less obvious reason is that functional sites con-
tain multiple features working synergistically and accurate recognition requires
identifying several of those features. What hampers current detection methods
is the likelihood that some sequence properties which contribute to function are
not reducible to position-specific patterns and thus are not easily incorporated
into current search techniques.

An example is double helical strand separation, a necessary antecedent for
several important DNA functions. Rather than exhibiting position specific prop-
erties, the propensity for strand separation appears to be spread, in a complex
way, over thousands of nucleotides. Programs have been developed to calculate
regions of conjectured low energy requirement for strand separation [5, 6, 30, 31]
and these programs have had some success in identifying sites which are func-
tionally dependent on this process.

In this paper, we develop a new approach for DNA sequence analysis which
employs the mechanisms of string matching and string comparison yet avoids the
overdependence of these methods on position-by-position matching. We initiate
the study of what we call the composition property, which manifests as similarity
in composition, rather than in position-specific patterns.

Definition: Composition is a vector quantity describing the frequency of oc-
currence of each alphabet letter in a particular string. Let S be a string over Σ.
Then, C(S) = (fσ1 , fσ2 , . . . , fσ|Σ|) is the composition of S, where for σi ∈ Σ, fσi

is the fraction of the characters in S that are σi. Note that the order of letters
in S is irrelevant as it has no effect on the composition of S. Two strings S and
T have a composition match if their lengths are equal and C(S) = C(T ).

There is an accumulating body of evidence that variation in composition
along the DNA strands contributes to function. There are a number of important
DNA features, at both large and small scales, whose unifying characteristic is
composition bias including:

– Isochores. These multi-megabase regions of genomic sequence are specifically
GC-rich or GC-poor. GC-rich isochores exhibit greater gene density. Human
ALU and L1 retrotransposons appear preferentially in isochores with com-
position that approaches their own [7, 8, 25].

– CpG islands. These regions of several hundred nucleotides are rich in the
dinucleotide CpG which is generally underrepresented (relative to overall
GC content) in eukaryotic genomes. The level of methylation of the cystine
(C) in these dinucleotide clusters has been associated with gene expression
in nearby genes [12, 11, 13].

– Protein binding regions. Within these domains, tens of nucleotides long, din-
ucleotide, or base-step composition, can contribute to DNA flexibility, al-
lowing the helix to change physical conformation, a common property of
protein-DNA interactions [24, 19, 14, 18].

The springboard for our study of the composition property is a new align-
ment algorithm which we call composition alignment or, more whimsically,



scrambled alignment. Standard sequence alignment is based on single char-
acter matching. In composition alignment, we extend the matching concept to
substrings which have the same composition i.e., composition matching. This al-
lows us to identify subsequences that share regions of similar composition. More
specifically, composition alignment is a pairing of substrings of exactly matching
composition separated by insertions, deletions or mismatches.

As an example, let

X = AACGTCTTTGAGCTC

Y = AGCCTGACTGCCTA

One possible composition alignment for X and Y is

AACGTCTTTGAGCTC
| |<-> | <--->
AGCCTGACT-GCCTA

where symbols between the letters are used to indicate single character
matches (|) and substring composition matches (< − − − >). Note that com-
position matches (either single or multicharacter) can occur consecutively in an
alignment.

An idea related to composition alignment is the “swap” operation in string
comparison, first discussed by Lowrance and Wagner [21, 28]. A swap or trans-
position is the exchange of two letters that are side-by-side. Matching two let-
ters and their transposition is equivalent to a composition match for substrings
of length two. Lowrance and Wagner gave a O(nm) time algorithm for align-
ment including the swap operation. More recently, Amir et al. [1] gave an algo-
rithm for finding all swapped matchings of a pattern of length m in a text of
length n with time complexity O(nm1/3 log m log σ). This was later improved to
O(n log m log σ) [2] and followed by an algorithm to count the number of swaps
in each swapped match within the same time complexity [3].

The remainder of the paper is organized as follows. In section 2 we present
a formal description of the composition alignment problem. In section 3 we
present our composition alignment algorithm and discuss scoring functions for
composition matches. In section 4 we discuss the match length limit parameter
and its effect on the statistical relevance of scores. Finally, in section 5, we
demonstrate the use of composition alignment on real biological sequences.

2 Problem Description

The problem we address is the following:
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Given: Two sequences, S of length m, and T of length n, over an alphabet Σ,
and a scoring function cm(s, t) for the score of a composition match between
substrings s and t.

Find: The best scoring alignment (global or local) of S with T such that the
allowed scoring options include composition match between substrings of
S and T as well as the standard options of single character match, single
character mismatch, insertion and deletion.

For the remainder of this paper, we will assume 1) that the alphabet Σ is
fixed and 2) that similarity scoring is used. The latter means that matches are
given positive weight; mismatches, insertions and deletions are given negative
weight; and the best alignment has the highest score.

3 Composition Alignment Algorithm

Our composition alignment algorithm is similar to standard alignment algo-
rithms [22, 26, 15] and is computed using dynamic programming. A single step
in filling the dynamic programming array, W , can be analyzed in the following
way. Given two sequences X = x1 · · ·xn and Y = y1 · · · ym, the best composition
alignment of the two prefix strings X [1, i] = x1 · · ·xi and Y [1, j] = y1 · · · yj ends
in one of the following four ways:

New:

1. A composition match between suffixes of length l, 1 ≤ l ≤ min(i, j, limit),
i.e., xi−l+1 · · ·xi and yj−l+1 · · · yj, where limit is an upper bound on the
length of a substring that can participate in a composition match. The ne-
cessity of limit will be explored further in section 4.

Standard:

1. A mismatch between xi and yj .
2. A deletion of xi.
3. A deletion of yj.

The score in cell (i, j) is the maximum obtained by these four possibilities
(global alignment) or the maximum among these four and a score of zero (local
alignment). Note that the score of alternative 1 is

W [i − l, j − l] + cm(xi−l+1 · · ·xi, yj−l+1 · · · yj),

where W is the alignment score matrix and cm() is the score function for com-
position matches. The time complexity of the algorithm is O(nmZ) where Z is
the time required, per (i, j) pair, to find the best length l in alternative 1 and
compute its score. In the next section, we show how to precompute the length
of the shortest composition match for every (i, j) pair in constant time per pair.
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Fig. 1. A) Graph of composition differences (excess of 1’s in prefixes of S relative to
T ). B) Ordered pairs (prefix length, composition difference) unsorted and sorted using
composition difference as the key. Arrows mark prefixes mentioned in text. C) The
ML[i, j] array for diagonal zero (i = j).

3.1 Finding Composition Matches

Our goal here is to find the length, l, of the shortest suffixes of the strings X [1, i]
and Y [1, j] which have a composition match, and to do this for every (i, j) pair,
in constant time per pair. For example, if X = AACGTCTTTGAGCTC and
Y = AGCCTGACTGCCTA, then for the pair (4, 8), the shortest suffixes that
have a composition match are X [2, 4] = ACG and Y [6, 8] = GAC each with a
length of 3. To find these matches, we use composition difference.

Definition: Composition difference is a vector quantity for two strings. Let
x and y be strings over an alphabet Σ. Then CD(x, y) = (cσ1 , . . . , cσ|Σ|) is
the composition difference of x and y, where cσr = cx

σr
− cy

σr
is the difference

between the number of times σr occurs in x (cx
σr

) and the number of times
it occurs in y (cy

σr
). For example, let Σ = {0, 1}, x = 010111010001000 and

y = 010001101110111. Then CD(x, y) = (3,−3) because x has three more zeros
and three fewer ones than y.

We compute composition match lengths for one diagonal of the alignment
matrix at a time. Each diagonal is defined by a value d,−n ≤ d ≤ m and
contains the index pairs (i, j) such that j − i = d. The substrings processed in a
diagonal for d ≥ 0 are X [1, k] and Y [1+d, k+d] and for d ≤ 0 are X [1−d, k−d]
and Y [i, k] for all values of k = 1, . . . , min(m, n) such that both strings are
non-null.

To illustrate, let S = 010111010001000 and T = 010001101110111. We show
how to process diagonal zero. Figure 1A is a plot of the composition differences
for successive prefixes of S and T . Since the components of any composition
difference vector must sum to zero, we plot only the excess of ones in S relative
to T (the second number in the composition difference vector).



The key observation is that two identical composition differences at prefix
lengths g and h with g < h, indicate a composition match between the sub-
strings of S and T from position g + 1 to position h, i.e., of length h − g. As
shown in the plot of our example, prefix lengths 3 and 10 both have composition
difference (0, 0) so there is a composition match between the substrings S[4, 10]
and T [4, 10]. Similarly, prefix lengths 4, 7 and 9 each have composition difference
(−1, 1), so there is a composition match for the substring pairs (S[5, 7], T [5, 7]),
(S[5, 9], T [5, 9]), and (S[8, 9], T [8, 9]). Note that prefix length 11 has composi-
tion difference (1,−1) which is not shared by any prefix length shorter than 11.
Therefore, there is no composition match for the prefixes ending at position 11
in these two strings.

To identify composition matches, we compute the ordered pairs (prefix length,
composition difference) and then sort these using composition difference as the
key (Figure 1B). This is done with radix sort ([10] p. 178) across the σ values and
counting sort ([10] p. 175) within each σ value. Notice that both sorts are stable,
i.e. they do not rearrange elements with the same key. Shortest composition
matches are determined by scanning the sorted list to find adjacent elements with
the same key (composition difference). The difference between prefix lengths is
then stored in an array ML[i, j]. In our example, since prefix lengths 10 and 3
are adjacent with the same composition difference, we store 7(= 10 − 3) as the
shortest composition match for prefixes of S and T of length 10.

Time complexity. The sorting is linear in the number of elements when the
alphabet is fixed. For a single diagonal of the alignment matrix, the number of
elements is the diagonal length. Over all diagonals, the number of elements is
(n + 1)(m + 1). Therefore the time complexity to preprocess the strings to find
all shortest composition match lengths is O(nm).

3.2 Scoring functions

The overall complexity of our composition alignment algorithm depends on the
complexity of computing the best length l for a composition match. This in
turn depends on the scoring function, cm(), for composition matches. Below, we
discuss several scoring functions we have tested.

Functions based on match length. In this group, the score of a composition
match depends on the length, k, of the match. We have tested

– Function 1: cm(k) = ck
– Function 2: cm(k) = c

√
k

– Function 3: cm(k) = c log(k + 1)

where c is a constant. These functions are additive or subadditive, meaning that
cm(i + j) ≤ cm(i) + cm(j). Function 1 (additive) treats matches of different
lengths equally. Functions 2 and 3 (subadditive) give less weight, per character,
to long composition matches, than to short composition matches.



A convenient property of additive or subadditive functions is that, when
computing alternative 1 of the alignment score, for any (i, j) pair, it is sufficient
to find the length of the shortest suffixes of X [1, i] and Y [1, j] which have a
composition match.

Lemma 1. For an index pair (i, j), let l = l1 < l2 < . . . < lk, 1 ≤ l ≤ min(i, j),
be the lengths for which there is a composition match between the suffixes X [i−
l + 1, i] and Y [j − l + 1, j]. Then, the score for the best alignment which ends in
a composition match between suffixes of X [1, i] and Y [1, j] is equal to the score
when the suffixes have length l1. That is, ∀h, 2 ≤ h ≤ k, W (i−l1, j−l1)+cm(l1) ≥
W (i − lh, j − lh) + cm(lh).

Proof. Assume by way of contradiction that there is an lh > l1 such that

W (i − lh, j − lh) + cm(lh) > W (i − l1, j − l1) + cm(l1).

Let lh = l′ + l1. Then

W (i − lh, j − lh) + cm(l′ + l1) > W (i − l1, j − l1) + cm(l1)
W (i − lh, j − lh) + cm(l′ + l1) − cm(l1) > W (i − l1, j − l1)

but by additivity or subadditivity,

cm(l′) ≥ cm(l′ + l1) − cm(l1)

so

W (i − lh, j − lh) + cm(l′) > W (i − l1, j − l1)

which is a contradiction because W (i − l1, j − l1) is assumed to be optimal
including the possibility that the alignment which yields this score ends with
the composition match of length l′.

This means that breaking up a long composition match into shorter matches
(if possible) will leave the score the same (function 1) or increase the score
(functions 2 and 3). The alignment shown in the introduction contains a 4 char-
acter composition match which is broken into a single character match and a 3
character match.

Theorem 2. Composition alignment with an additive or subadditive composition
match scoring function has time complexity O(nm).

Proof: Follows from the discussion in section 3.1.

Functions based on substring composition. Here, the score of a composition
match depends not just on length, but on the composition of the matching
substrings. We have tested:

– Function 4: cm(x, y, k) = ck · H(C, B)



where x and y are substrings with common composition C, k is their length,
and c is a constant. H(C, B) is the relative entropy of composition C given a
background composition B. Relative entropy is defined as

H(C, B) = −
∑

σ∈Σ

fσ log(fσ/bσ)

where fσ is a frequency in the composition vector C and bσ is the corresponding
frequency in the background composition B. This function can only be used if for
every non-zero fσ in C there is a corresponding non-zero bσ in B, else there will
be a divide-by-zero problem. In our studies this has not arisen because we use
the overall frequency of letters in the sequences to be aligned as the background.
If divide-by-zero is possible, H can be replaced with the unweighted Jensen-
Shannon divergence [20]. We have not yet tested this function extensively.

Function 4 favors composition matches where the substrings differ signifi-
cantly from the background. This could, for example, be a long repetition of a
single letter, assuming the background is relatively balanced. This function is
not additive or subadditive, so finding the shortest composition match for any
(i, j) pair does not always yield the optimal match length. Since a longer match
may yield a higher alignment score, we must test all substring match lengths per
(i, j) pair. This can easily be done in time linear in the number of match lengths
by stepping through the ML array which stores the shortest match lengths, but
requires at most min(m, n) tests per (i, j) pair. In practice though, the limit
parameter explained below restricts the number of tests to at most limit per
(i, j) pair.

Theorem 3. Composition alignment using function 4 for compositon match
scoring and the limit parameter has time complexity O(nm · limit).

Proof. Follows from discussion above.

Retrieving the alignment. After the alignment score array W has been com-
puted, the optimal alignment is retrieved by tracing back as in standard align-
ment. When a score W [i, j] is derived from a composition match, we need to
reference the length of the matching substring. For Functions 1, 2 and 3, this is
done by querying the ML[i, j] value. For Function 4, we must store the optimal
match lengths separately as the scores are being computed and then refer to
these values when tracing back. In either case, retrieving the alignment requires
O(n + m) time.

4 Alphabet Size and the Limit Parameter

The study of alignment using similarity scoring has shown that for ungapped lo-
cal alignments of randomly generated sequences, the parameter space for match
and mismatch weights is divided into logarithmic and linear regions. In the log-
arithmic region, the parameters produce alignment scores proportional to the
logarithm of sequence lengths whereas in the linear region, the scores are di-
rectly proportional to the sequence lengths [29]. It is generally accepted that



weight combinations which fall within the logarithmic region are useful for de-
tecting biologically related sequences, whereas those in the linear region do not
distinguish between related and unrelated sequences. The same general features
have been observed in gapped local alignments where gap weight is an addi-
tional parameter [27, 4]. The rubric for determining if parameters fall within the
logarithmic or linear regions is to look at the expected score per aligned letter
pair (ungapped alignments [17]) or the expected global alignment score (gapped
alignments [4]). In either case, if the expected score is negative, and assuming
that positive scores are possible, then the parameters fall within the logarithmic
region.

Here we are primarily interested in how the limit parameter, the length of the
longest allowed composition match, fits into this framework. When limit = 1,
composition alignment is equivalent to standard alignment. When limit = 2,
any pair of adjacent letters in one sequence is allowed to match its transposition
in the other sequence. This corresponds to the swap operation mentioned earlier
[21]. For limit = 3, both scrambled triplets and transposed doublets are allowed
to match, etc. Intuitively, allowing scrambled letters to match should increase
the amount of matching. If too much matching occurs, then the average score
will be positive and the alignments will not be meaningful.

4.1 Expected fraction of matching characters in alignments

We have examined both ungapped and gapped composition alignments to deter-
mine the expected fraction of aligned letter pairs that are counted as matches.

Ungapped alignments. Suppose we have a binary alphabet and we exam-
ine ungapped aligned strings of length 2 where the characters are generated iid
with probability 0.5. Under single character matching, the expected fraction of
characters counted as matching is 0.5, i.e. on average half the characters will
be counted as matches. When we allow composition matches with limit = 2,
the expected number of characters counted as matches increases to 0.625. For
aligned strings of length 3, the results are similar. For single character matching
the expected fraction is still 0.5, but for composition matching with limit = 3
(substring pairs of length 2 or 3 can match as long as they have the same compo-
sition), the expected fraction of matches is 0.6875. As the sequence length grows,
calculating the fraction of matches becomes complicated, so we turn to simu-
lation. When the string length reaches 10, and we allow composition matching
with limit = 10, the fraction of matches is above 0.82 (table 1).

For the four letter DNA alphabet, when the letters are generated iid with
probability 0.25, the fraction of characters matching grows similarly but more
slowly. For the sixteen letter dinucleotide alphabet, the probability grows until
reaching an apparent asymtotic upper bound around 0.075. For dinucleotides,
we first generate an iid DNA sequence and then convert it to a dinucleotide
sequence. Notice that consecutive letters in the dinucleotide sequence are not



Sequence length 1 2 3 4 5 6 7 8 9 10

Binary (%) 50.0 62.5 68.75 72.7 75.6 77.3 78.9 80.3 81.3 82.4

DNA (%) 25.0 30.0 32.3 35.3 37.5 39.7 40.7 42.4 43.3 44.2

Dinucleotide (%) 6.2 6.5 6.7 6.9 7.1 7.3 7.3 7.3 7.4 7.5

Table 1. Fraction of characters counted as matching in randomly generated ungapped
alignments where limit equals alignment length, for three alphabets. In each case,
all letters in an alphabet have equal probability. Results are derived from simulations
except for sequence length 1 in all alphabets and lengths 2 and 3 in the binary alphabet.

independent (i.e. if the first dinucleotide is AC, then the next must start with a
C).

To investigate the fraction of matches in longer sequences where the limit
is smaller than the sequence length, we use global composition alignment to
count the matches. Here, insertions and deletions are not allowed, all matches
are weighted 1 and all mismatches weighted zero. Results for DNA sequences of
length 100 and dinucleotide sequences of length 400 are shown in Table 2. As
can be seen in the table, the fraction matching in DNA sequences is nearly 45%
with limit = 5 and reaches 50% when limit = 9. For dinucleotides, the fraction
levels off at 7.78% for limit ≥ 20.

For local, ungapped composition alignments with DNA sequences using align-
ment parameters (composition match constant, single character match, mis-
match) = (1, 1,−1), alignment scores grow in proportion to the log of the se-
quence length for limit ≤ 5 (data not shown). For limit between 6 and 10,
growth is proportional to the square root of the sequence length. Note that with
these alignment parameters, the expected score of an aligned pair is negative
until limit = 9 (table 2). Thus negative expected score per aligned letter pair is
an inaccurate predictor of logarithmic score growth for ungapped composition
alignments.

Gapped alignments. For gapped alignments, we use simulations with actual
parameter values and composition match scoring functions because the interac-

DNA: sequence lengths = 100; iid; p = 0.25

limit 1 2 3 4 5 6 7 8 9 10

fraction matching (%) 25.0 33.7 38.6 42 44.4 46.3 47.8 49.0 50.0 51.0

dinucleotide: sequence lengths = 400; iid; p = 0.25

limit 1 2 5 10 20 30 40 50

fraction matching (%) 6.25 6.81 7.66 7.76 7.78 7.78 7.78 7.78

Table 2. Fraction of characters counted as matching in longer randomly generated
DNA and dinucleotide sequences, after composition alignment without gaps, for various
limit values.
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Right) Average global scores become positive at limit = 5.

tion of these determines the number of gapped positions. The results are useful
for several purposes:

1. To define values for the limit parameter that fall within the logarithmic
region.

2. To test for concurrence between 1) the change from negative to positive
average global alignment score and 2) the change from logarithmic to lin-
ear behavior in the local alignment score. This is not obvious because the
assumptions that underly the theory for alignment scores do not include
scrambled alignment.

3. To estimate local alignment score distributions so that the composition align-
ment algorithm can be used to search for statistically significant alignments
in real biological sequences.

We used DNA sequences generated iid with probability 0.25 for each letter
and two sets of alignment parameters (composition match constant, single char-
acter match, mismatch, indel), (2, 2,−3,−5) and (2, 2,−7,−7). Here we summa-
rize some of the more important results.

Function 1. Local alignment scores grow in proportion to the logarithm of
sequence length for limit ≤ 3. At limit = 4, scores are proportional to the square
root of sequence length. Note though, that the average global alignment score
does not become positive until limit = 5. See figure 2. These results indicate
that function 1 should be used with limit set to 3 and not higher. Also, positive
or negative expected global score is inaccurate as a predictor of the parameter
values that yield logarithmic growth in local alignment scores.

Functions 2 and 3. Local alignment scores for function 2 are logarithmically
related to sequence length below limit = 10. Average global scores do not become
positive with limit as high as 50. See figure 3. Function 3 behaves similarly.
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Again, average global score is an inaccurate predictor of local alignment score
behavior.

Function 4. Local alignment scores are proportional to the log of the sequence
lengths up to limit = 50.

5 Examples

We tested our composition alignment algorithm on a set of 1796 human promoter
sequences from the Eukaryotic Promoter Database (EPD) [23] maintained by the
Bioinformatics Group of the Swiss Institute for Experimental Cancer Research.
The database contains a collection of roughly 3000 annotated non-redundant eu-
karyotic RNA polymerase II promoters for which the transcription start site has
been experimentally determined. Each sequence is 600 bases long and consists

GCCCGCCCGCCGCGCTCCCGCCCGCCGCTCTCCGTGGCCC-CGCCG-CGCTGCCGCCGCCGCCGCTGC
<->||||<>|<>||<>| ||||<>||<> |<-> |||||| <>|<> ||||<><> |<>| ||<->||
CCGCGCCGCCGCCGTCCGCGCCGCCCCG-CCCT-TGGCCCAGCCGCTCGCTCGGCTCCGCTCCCTGGC

Composition Alignment:

Standard Alignment:

CGCCGCCGCCG
CGCCGCCGCCG

Fig. 4. Composition alignment and standard alignment of promoters EP27006 and
EP73975, positions 474-539 and 430-495 respectively. Composition of aligned subse-
quences (top alignment) is (0.01, 0.59, 0.30, 0.11). Background composition of these
promoters is (0.11, 0.44, 0.34, 0.11). Standard alignment is not statistically significant.



GCCCCGCGCCCCGCGCCCCGCGCCCCGCGCGCCTC-CGCCCGCCCCT-GCTCCGGC---C-TTGCGCCTGC-GCACAGTGGGATGCGCGGGGAG
<->|<><>|||| <>|||||| ||<->|<>||||| <>|||| |||| || ||<->   |  |<><>|<-> | |<>|<>|<>||||<-><->|
CCGCGCGCCCCC-GCCCCCGCCCCGCCCCGGCCTCGGCCCCGGCCCTGGC-CCCGGGGGCAGTCGCGCCTGTG-AACGGTGAGTGCGGGCAGGG

rightleft

Fig. 5. Composition alignment of promoters EP73298 and EP11149, positions 323-
409 and 444-534 respectively. Composition of left two thirds, (0.01, 0.61, 0.30, 0.08), is
dramatically different from composition of right third, (0.19, 0.16, 0.56, 0.09).

of 500 bases upstream and 100 bases downstream of the transcription initiation
point. The sequences are non-redundant as selected from the database, which
means that no two share greater than 50% sequence identity.

The sequences were aligned pairwise using composition match scoring func-
tion 1 with alignment parameters (composition match constant, single character
match, mismatch, indel) of (2, 2,−7,−7). This produced a score W . Each pair
was also aligned with a standard alignment algorithm using the same parameter
values, producing a score S. Those pairs for which 1) W was above the statisti-
cal significance cutoff score for composition alignment for a set of sequences this
large (as determined by simulation) and 2) W ≥ 3 ·S were retained. The second
criterion was used to exclude composition alignments that scored highly because
they were redetecting good standard alignments. Two high scoring alignments
are shown here.

The first example was obtained with the promoter pair EP27006 and EP73975
(Figure 4). The standard local alignment which is not statistically significant is
shown for comparison. The composition alignment is characterized by high GC
content (89%), an enrichment over the background frequency of these sequences
(78%). The number of CpG dinucleotides found in the aligned regions is more
than expected given either the background composition of these subsequences
or the entire sequences. This suggests that the aligned regions are part of CpG
islands which are defined [13] as being 200 bp subsequences with a C+G content
exceeding 50% and a ratio of observed CpG to expected CpG in excess of 0.6.
CpG islands are known to occur in the 5’ region of many genes. This alignment
is typical of many obtained with the promoter set.

A second example involves promoters EP73298 and EP11149 (Figure 5).
Again, the standard local alignment score for this pair is not statistically sig-
nificant. An interesting feature of the composition alignment is the change in
composition of the subsequences from left to right. The left two thirds is GC rich
with C dominant, and a single A: (0.01, 0.61, 0.30, 0.08). The situation changes
at the right which is G dominant with the fraction of As, and Cs equivalent:
(0.19, 0.16, 0.56, 0.09). The fraction of Ts is roughly the same throughout. No-
tice that the background composition for these sequences is typical, GC rich
with the complementary nucleotides balanced: (0.15, 0.36, 0.34, 0.15).



6 Conclusion

We define a new type of alignment problem, composition alignment which ex-
tends the matching concept to substrings of equal length and the same nucleotide
composition. We give an algorithm for composition alignment which has time
complexity O(nm) for a fixed alphabet when the composition match scoring
function is additive or subadditive. The time complexity is O(nm · limit) for a
relative entropy scoring function where limit is an upper bound on the length
of the substrings that can match. We explore how limit fits into the frame-
work of the logarithmic and linear regions of alignment parameter space. When
computing gapped alignments, using our function 1, limit should be set to 3.
For functions 2 and 3 limit should be under 10 and for function 4, limit can
be as high as 50. We give two examples of composition alignments for human
RNA polymerase II promoters where the composition alignment scores are sta-
tistically significant even though there is no detectable similarity with standard
alignment.
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