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Discovering Frequent Event Patterns

with Multiple Granularities in Time Sequences
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Abstract—An important usage of time sequences is to discover temporal patterns. The discovery process usually starts with a user-
specified skeleton, called an event structure, which consists of a number of variables representing events and temporal constraints
among these variables; the goal of the discovery is to find temporal patterns, i.e., instantiations of the variables in the structure that
appear frequently in the time sequence. This paper introduces event structures that have temporal constraints with multiple
granularities, defines the pattern-discovery problem with these structures, and studies effective algorithms to solve it. The basic
components of the algorithms include timed automata with granularities (TAGs) and a number of heuristics. The TAGs are for testing
whether a specific temporal pattern, called a candidate complex event type, appears frequently in a time sequence. Since there are
often a huge number of candidate event types for a usual event structure, heuristics are presented aiming at reducing the number of
candidate event types and reducing the time spent by the TAGs testing whether a candidate type does appear frequently in the
sequence. These heuristics exploit the information provided by explicit and implicit temporal constraints with granularity in the given

event structure. The paper also gives the results of an experiment to show the effectiveness of the heuristics on a real data set.

Index Terms—Data mining, knowledge discovery, time sequences, temporal databases, time granularity, temporal constraints,

temporal patterns.

1 INTRODUCTION

HUGE amount of data is collected every day in the
form of event time sequences. Common examples are
recordings of different values of stock shares during a day;,
accesses to a computer via an external network, bank trans-
actions, or events related to malfunctions in an industrial
plant. These sequences register events with corresponding
values of certain processes, and are valuable sources of in-
formation not only to search for a particular value or event
at a specific time, but also to analyze the frequency of cer-
tain events, or sets of events related by particular temporal
relationships. These types of analyses can be very useful for
deriving implicit information from the raw data, and for
predicting the future behavior of the monitored process.
Although a lot of work has been done on identifying and
using patterns in sequential data (see [1], [11] for an over-
view), little attention has been paid to the discovery of
temporal patterns or relationships that involve multiple
granularities. We believe that these relationships are an im-
portant aspect of data mining. For example, while analyz-
ing automatic teller machine transactions, we may want to
discover events that are constrained in terms of time
granularities such as events occurring in the same day, or
events happening within k weeks from a specific one. The
system should not simply translate these bounds in terms
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of a basic granularity since it may change the semantics of
the bounds. For example, one day should not be translated
into 24 hours since 24 hours can overlap across two con-
secutive days.

In this paper, we focus our attention on providing a
formal framework for expressing data mining tasks in-
volving time granularities, and on proposing efficient algo-
rithms for performing such tasks. To this end, we introduce
the notion of an event structure. An event structure is essen-
tially a set of temporal constraints on a set of variables
representing events. Each constraint bounds the distance
between a pair of events in terms of a time granularity.
For example, we can constrain two events to occur in a
prescribed order, with the second one occurring between
four and six hours after the first but within the same busi-
ness day. We consider data mining tasks where an event
structure is given and only some of its variables are instan-
tiated. We examine the event sequence for patterns of
events that match the event structure. Based on the fre-
quency of these patterns, we discover the instantiations for
the free variables.

To illustrate, assume that we are interested in finding all
those events which frequently follow within two business
days of a rise of the IBM stock price. To formally model this
data mining task, we set up two variables, X, and X;, where
X, is instantiated with the event type “rise of the IBM
stock” while X is left free. The constraint between X, and
X; is that X; has to happen within two business days after
X, happens. The data mining task is now to find all the
instantiations of X; such that the events assigned to X;
frequently follow the rise of the IBM stock. Each such in-
stantiation is called a solution to the data mining task.
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In order to find all the solutions for a given event struc-
ture, we first consider the case where each variable is in-
stantiated with a specific event type. We call this a candidate
instantiation of the event structure. We then scan through
the time sequence to see if this candidate instantiation oc-
curs frequently. In order to facilitate this pattern matching
process, we introduce the notion of a timed finite automaton
with granularities (TAG). A TAG is essentially a standard
finite automaton with the modification that a set of clocks is
associated with the automaton and each transition is con-
ditioned not only by an input symbol, but also by the val-
ues of the associated clocks. Clocks of an automaton may be
running in different granularities.

To effectively perform data mining, however, we cannot
naively consider all candidate instantiations, since the
number of such instantiations is exponential in the number
of variables. We provide algorithms and heuristics that ex-
ploit the granularity system and the given constraints to
reduce the hypothesis space for the pattern matching task.
The global approach offers an effective procedure to dis-
cover patterns of events that occur frequently in a sequence
satisfying specific temporal relationships.

We consider our algorithms and heuristics as part of a
general data mining system which should include, among
other subsystems, a user interface. Data mining requests are
issued through the user interface and processed by the data
mining algorithms. The requests will be in terms of the
aforementioned event structures which are the input to the
data mining algorithms. In reality, a user usually cannot
come up with a request from scratch that involve compli-
cated event structures. Complicated event structures are
often given by the user only after the user explores the data
set using simpler ones. That is, temporal patterns “evolve”
from simple ones to complex ones with a greater number of
variables in the event structure and/or tighter temporal
constraints. Our algorithms and heuristics are designed,
however, to handle complicated as well as simple event
structures.

1.1 Related Work

The extended abstract in [5] established the theoretical foun-
dations for this work. Timed finite automata with multiple
granularities and reasoning techniques for temporal con-
straints with multiple granularities are introduced there.

In the artificial intelligence area, a lot of work has been
done for discovering patterns in sequence data (see, for
example, [9], [11]). In the database context, where input
data is usually much larger, the problem has been studied
in a number of recent papers [18], [2], [13], [19]. Our work is
closest to [13], where event sequences are searched for fre-
quent patterns of events. These patterns have a simple
structure (essentially a partial order) whose total span of
time is constrained by a window given by the user. The
technique of generating candidate patterns from subpat-
terns, together with a sliding window method, is shown to
provide effective algorithms. Our algorithm essentially
follows the same approach, decomposing the given pattern
and using the results of discovery for subpatterns to reduce
the number of candidates to be considered for the discovery
of the whole pattern. In contrast to [13], we consider more

complex patterns where events may be in terms of different
granularities, and windows are given for arbitrary pairs of
events in the pattern.

In [2], the problem of discovering sequential patterns
over large databases of customer transactions is considered.
The proposed algorithms generate a data sequence for each
customer from the database and search on this set of se-
quences for a frequent sequential pattern. For example, the
algorithms can discover that customers typically rent “Star
Wars,” then “Empire Strikes Back,” and then “Return of the
Jedi.” Similarly to [13], the strategy of [2] is starting with
simple subpatterns (subsequences in this case) and incre-
mentally building longer sequence candidates for the dis-
covery process. While we assume to start directly with a
data sequence and not with a database, we consider more
complex patterns that include temporal distances (in terms
of multiple granularities) between the events in the pattern.
This gives rise to the capability, for example, to discover
whether the above sequential pattern about “Star Wars”
movie rentals is frequent if the three renting transactions
need to occur within the same week. A similar extension is
actually cited as an interesting research topic in [2]. The
need for dealing with multiple time granularities in event
sequences is also stressed in [10].

Finally, the work in [18], [19] also deals with the discov-
ery of sequential patterns, but it is significantly different
from our work. In [18], the considered patterns are in the
form of specific regular expressions with a distance metrics
as a dissimilarity measure in comparing two sequences. The
proposed approach is mainly tailored to the discovery of
patterns in protein databases. We note that the concept of
distance used in [18] is essentially an approximation meas-
ure, and, hence, it differs from the temporal distance be-
tween events specified by our constraints. In [19], a scenario
is considered where sequential patterns have previously
been discovered and an update is subsequently made to the
database. An incremental discovery algorithm is proposed
to update the discovery results considering only the af-
fected part of the database.

The temporal constraints with granularities introduced
in this paper are closely related to temporal constraint
networks and their reasoning problems (e.g., consistency
checking) that have been studied mostly in the artificial
intelligence area (cf. [8]); however, these works assume that
either constraints involve a single granularity or, if they
involve multiple granularities, they are translated into con-
straints in single granularity before applying the algo-
rithms. We introduce networks of constraints in terms of
arbitrary granularities and a new algorithm to solve the
related problems. Finally, the TAGs presented here are ex-
tensions of the timed automata introduced in [4] for mod-
eling real-time systems and checking their specifications.
We extend the automata to ones which have clocks moving
according to different time granularities.

The remainder of this paper is organized as follows. In
Section 2, we begin with a definition of temporal types that
formalizes the intuitive notion of time granularities. We for-
malize the temporal pattern-discovery problem in Section 3.
In Section 4, we focus on algorithms for discovering pat-
terns from event sequences; and in Section 5, we provide
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Fig. 1. Three temporal types covering the span of time from February 26 to April 2, 1996, with day as the absolute time.

a number of heuristics to be applied in the discovery proc-
ess. In Section 6, we analyze the costs and effectiveness of
the heuristics with the support of experimental results. We
conclude the paper in Section 7 with some discussion. In
Appendix A, we report on an algorithm for deriving im-
plicit temporal constraints and provide proofs for the re-
sults in the paper.

2 PRELIMINARIES

In order to formally define temporal relationships that in-
volve time granularities, we adopt the notion of temporal
type used in [17] and defined in a more general setting in [6].
A temporal type is a mapping u from the set of the positive
integers (the time ticks) to 2% (the set of absolute time setsl)
that satisfies the following two conditions for all positive
integersiand jwithi<j:

1) u(i) # 2 A u(j) = # implies that each number in (i) is

less than all the numbers in 4(j), and

2) u(i) = @ implies u(j) = 2.

Property 1) is the monotonicity requirement. Property 2) dis-
allows a certain tick of x4 to be empty unless all subsequent
ticks are empty. The set (i) of reals is said to be the ith tick
of u, or tick i of 1, or simply a tick of z.

Intuitive temporal types, e.g., day, month, week, and
year, satisfy the above definition. For example, we can
define a special temporal type year starting from year 1800
as follows: year(1) is the set of absolute time (an interval
of reals) corresponding to the year 1800, year(2) is the
set of absolute time corresponding to the year 1801, etc.
Note that this definition allows temporal types in which
ticks are mapped to more than one continuous interval. For
example, in Fig. 1, we show a temporal type representing
business weeks (b-week), where a tick of b-week is the
union of all business days (b-day) in a certain week (i.e.,
excluding all Saturdays, Sundays, and general holidays).
This is a generalization of most previous definitions of
temporal types.

When dealing with temporal types, we often need to
determine the tick (if any) of a temporal type u that covers a
given tick z of another temporal type v. For example, we
may wish to find the month (an interval of the absolute
time) that includes a given week (another interval of the
absolute time). Formally, for each positive integer z and
temporal types ¢ and v, if 3z’ (necessarily unique) such that

Uz)  u(z') then [z = Z', otherwise [z]! is undefined. The

1. We use the symbol R to denote the real numbers. We assume that the
underlying absolute time is continuous and modeled by the reals. How-
ever, the results of this paper still hold if the underlying time is assumed to
be discrete.

uniqueness of z' is guaranteed by the monotonicity of tem-

poral types. As an example, [215“;2252 gives the month that

month

includes the second z. Note that while |'z'|second

defined, [Z]1o"

months. Similarly, [Z]

is always

is undefined if week z falls between two
b-day
day

urday, Sunday, or a general holiday. In this paper, all
timestamps in an event sequence are assumed to be in
terms of a fixed temporal type. In order to simplify the no-
tation, throughout the paper we assume that each event

sequence is in terms of second, and abbreviate [z] as

is undefined if day z is a Sat-

|_Z-|p if v=seconds.

We use the [ -|’: function to define a natural relationship

between temporal types: A temporal type v is said to
be finer than, denoted <, a temporal type u if the function
|'z'|f is defined for each nonnegative integer z. For example,
day < week. It turns out that < is a partial order, and

the set of all temporal types forms a lattice with respect
to < [17].

3 FORMALIZATION OF THE DISCOVERY PROBLEM

Throughout the paper, we assume that there is a finite set of
event types. Examples of event types are “deposit to an ac-
count” or “price increase of a specific stock.” We use the
symbol E, possibly with subscripts, to denote event types.
An event is a pair e = (E, t), where E is an event type and t is
a positive integer, called the timestamp of e. An event se-
quence is a finite set of events {(E;, t;), ..., (E,, t,)}. Intui-
tively, each event (E, t) appearing in an event sequence o
represents the occurrence of event type E at time t. We often
write an event sequence as a finite list (Ey, ty), ..., (En to),
where t; < t;,, foreachi=1,...,n-1

3.1 Temporal Constraints with Granularities

To model the temporal relationships among events in a se-
quence, we introduce the notion of a temporal constraint
with granularity.

DEFINITION. Let m and n be nonnegative integers with m < n and
M be a temporal type. A temporal constraint with
granularity (TCG) [m, n] u is the binary relation on posi-

tive integers defined as follows: For positive integers t; and
t,, (ty, t;) € [m, n] u is true (or t; and t, satisfy
[m, n] w)iff1) t, <t,, 2) |'t1-|“ and |'t2-|“ are both defined,

and3)ms< (4,1 -[t]) <n.
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Intuitively, for timestamps t; < t, (in terms of seconds), t;
and t, satisfy [m, n] u if there exist ticks u(t;) and u(t))

covering, respectively, the t;th and t,th seconds, and if
the difference of the integers t; and t; is between m and n
(inclusive).

In the following we say that a pair of events satisfies a
constraint if the corresponding timestamps do. It is easily
seen that the pair of events (eq, e,) satisfies TCG [0, 0]
day if events e; and e, happen within the same day but
e, does not happen earlier than e;. Similarly, e; and e,
satisfy TCG [0, 2] hour if e, happens either in the same sec-
ond as e; or within two hours after e;. Finally, e; and e, sat-
isfy [1, 1] month if e, occurs in the month immediately after
that in which e; occurs.

3.2 Event Structures with Multiple Granularities

We now introduce the notion of an event structure. \We as-
sume there is an infinite set of event variables denoted by
X, possibly with subscripts, that range over events.

DEFINITION. An event structure (with granularities) is a
rooted directed acyclic graph (W, A, '), where W is a finite
set of event variables, A c W x W and I' is a mapping from
A to the finite sets of TCGs.

Intuitively, an event structure specifies a complex tem-
poral relationship among a number of events, each being
assigned to a different variable in W. The set of TCGs as-
signed to an edge is taken as conjunction. That is, for each
TCG in the set assigned to the edge (X;, X;), the events as-
signed to X; and X; must satisfy the TCG. The requirement
that the temporal relationship graph of an event structure
be acyclic is to avoid contradictions, since the timestamps
of a set of events must form a linear order. The requirement
that there must be a root (i.e., there exists a variable X, in W
such that for each variable X in W, there is a path from X, to
X) in the graph is based on our interest in discovering the
frequency of a pattern with respect to the occurrences of a
specific event type (i.e., the event type that is assigned to
the root). See Section 4. Fig. 2 shows an event structure.

We define two additional concepts based on event
structures: a complex event type and a complex event.

DEFINITION. Let S = (W, A, I") be an event structure with time
granularities. Then a complex event type derived from
Sis § with each variable associated with an event type, and
a complex event matching Sis Swith each variable asso-
ciated with a distinct event such that the event timestamps
satisfy the time constraintsin I".

In other words, a complex event type is derived from an
event structure by assigning to each variable a (simple)
event type, and a complex event is derived from an event

[0,5]b-day X2

Xo

Fig. 2. An event structure.

structure by assigning to each variable an event so that the
time constraints in the event structure are satisfied.

Let 7 be a complex event type derived from the event
structure §= (W, A, T). Similar to the notion of an occur-
rence of a (simple) event type in an event sequence g, we
have the notion of an occurrence of 7 in o. Specifically, let
o' be a subset of ogsuch that | o'| = [W]. Then ¢’ is said to
be an occurrence of T if a complex event matching S can be
derived by assigning a distinct event in ¢’ to each variable
in W so that the type of the event is the same as the type
assigned to the same variable by 7. Furthermore, 7 is said
to occur in ¢if there is an occurrence of 7 in o

ExamMPLE 1. Assume an event sequence that records stock-
price fluctuations (rise and fall) every 15 minutes
(this sequence can be derived from the sequence
of stock prices) as well as the time of the releases
of company earnings reports. Consider the event
structure depicted in Fig. 2. If we assign the
event types for X, X;, X,, and X; to be IBM-rise,
IBM-earnings-report, HP-rise, and IBM-fall,
respectively, we have a complex event type. This
complex event type describes that the IBM earn-
ings were reported one business day after the IBM
stock rose, and in the same or the next week the
IBM stock fell; while the HP stock rose within five
business days after the same rise of the IBM stock
and within eight hours before the same fall of the
IBM stock.

3.3 The Discovery Problem
We are now ready to formally define the discovery problem.

DEeFINITION. An event-discovery problem is a quadruple (S,
7% Eo, p), where

1) Sisan event structure,

2) y(the minimum confidence value) a real number between
0 and 1 inclusive,

3) E, (the reference type) an event type, and

4) pis a partial mapping which assigns a set of event types
to some of the variables (except the root).

An event-discovery problem (S, % E,, p) is the problem of
finding all complex event types T such that each T

1) occurs frequently in the input sequence, and
2) is derived from § by assigning E, to the root and a
specific event type to each of the other variables.

(The assignments in 2) must respect the restriction stated in
p.) The frequency is calculated against the number of occur-
rences of E,. This is intuitively sound: If we want to say
that event type E frequently happens one day after IBM
stock falls, then we need to use the events corresponding
to falls of IBM stock as a reference to count the frequency of

[0,1]week

[0,8]hours
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E. We are not interested in an “absolute” frequency, but only
in frequency relative to some event type. Formally, we have:

DerINITION. The solution of an event-discovery problem (S, %
Eo, p) 0N a given event sequence o, in which E, occurs at
least once, is the set of all complex event types derived from
S, with the following conditions:

1) E, is associated with the root of § and each event type
assigned to a nonroot variable X belongs to p(X) if p(X)
is defined, and

2) each complex event type occurs in ¢ with a frequency
greater than y

The frequency here is defined as the number of times the
complex event type occurs for a different occurrence of E,
(i.e., all the occurrences using the same occurrence of E, for
the root are counted as one) divided by the number of times
E, occurs.

ExamMPLE 2. (5, 0.8, IBM-rise, p) is a discovery problem,
where Sis the structure in Fig. 2 and p assigns X;
to IBM-fall and assigns all other variables to
all the possible event types. Intuitively, we want to
discover what happens between a rise and fall of
IBM stocks, looking at particular windows of time.
The complex event type described in Example 1
where X; and X, are assigned, respectively, to
IBM-earnings-report and HP-rise will belong to
the solution of this problem if it occurs in the input
sequence with a frequency greater than 0.8 with re-
spect to the occurrences of IBM-rise.

4 DISCOVERING FREQUENT COMPLEX EVENT TYPES

In this section, we introduce timed finite automata with
granularities (TAGs) for the purpose of finding whether
a candidate complex event type occurs frequently in
an event sequence. TAGs form the basis for our discovery
algorithm.

4.1 Timed Finite Automata with Granularities (TAGS)

We now concern ourselves with finding occurrences of a
complex event type in an event sequence. In order to do so,
we define a variation of the timed automaton [4] that we
call a timed automaton with granularities (TAG).

A TAG is essentially an automaton that recognizes
words. However, there is a timing information associated
with the symbols of the words signifying the time when the
symbol arrives at the automaton. When a timed automaton
makes a transition, the choice of the next state depends not
only on the input symbol read, but also on values in the
clocks which are maintained by the automaton and each of
which is “ticking” in terms of a specific time granularity. A
clock can be set to zero by any transition and, at any in-
stant, the reading of the clock equals the time (in terms of
the granularity of the clock) that has elapsed since the last
time it was reset. A constraint on the clock values is associ-
ated with any transition, so that the transition can occur
only if the current values of the clocks satisfy the constraint.
It is then possible to constrain, for example, that a transition

fires only if the current value of a clock, say in terms of
week, reveals that the current time is in the next week with
respect to the previous value of the clock.

DEFINITION. A timed automaton with granularities (TAG) is
asix-tuple A= (%, S, Sy, C, T, F), where

1) Xis afinite set (of input letters),

2) Sisafinite set (of states),

3) Sy c Sisaset of start states,

4) Cis a finite set (of clocks), each of which has an associ-
ated temporal type,2

5) TCSXSXZXX 2° x ®(C) is a set of transitions, and

6) F < Sis aset of accepting states.

In (5), ®(C) is the set of all the formulas called clock con-
straints defined recursively as follows: For each clock x, in
C and nonnegative integer k, X, < k and k < x,, are formulas
in ®(C); and any Boolean combination of formulas in ®(C)
is a formula in ®(C).

A transition (s, s', e, 4, & represents a transition from
state s to state s' on input symbol e. The set 4 c C gives the
clocks to be reset (i.e., restart the clock from time 0) with
this transition, and ¢ is a clock constraint over C. Given a
TAG A4 and an event sequence og=¢, ..., &, a run of 4 over
ois a finite sequence of the form

<301 V0> a IjE — <Sl, V1> 0 i]El e
(Sn-1, Vn-1) O o - (Sny Vi)

where s; € S and v; is a set of pairs (x, 3t), with x being a
clock in C and t a nonnegative integer,” that satisfies the
following two conditions:

1) (Initiation) s, € Sy, and vy = {(x, 0)]x € C}, i.e, all
clock values are 0; and

2) (Consecution) for each i > 1, there is a transition in T of
the form (s;—y, S;, &, 4, &) such that & is satisfied by
using, for clock xy, the value t + 0, - ., where
(Xu t) is in vi—; and t; and t;—; are the timestamps of e
and e;_;.

For each clock xy, if X, is in 4;, then (x4, 0) is in v;; otherwise,
(X t+ A - @, @) is in v; assuming (X t) is in vi—y. Arun
r is an accepting run if the last state of r is in the set F. An
event sequence o is accepted by a TAG A if there exists an
accepting run of 4 over o.

4.2 Generating TAGs from Complex Event Types

Given a complex event type 7; it is possible to derive a cor-
responding TAG. Formally:

THEOREM. 1. Given a complex event type 7, there exists a timed
automaton with granularities TAG  such that 7  occurs in
an event sequence o'iff TAG 4 has an accepting run over o.
This automaton can be constructed by a polynomial—-time
algorithm.

The technique we use to derive the TAG corresponding
to a complex event type derived from S'is based on a

2. The notation x will be used to denote a clock x whose associated tem-
poral type is 4.
3. The purpose of vj is to remember the current time value of each clock.
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b-day

25 1%, S
= pday

ANY

Fig. 3. An example of timed automaton with granularities.

decomposition of Sinto chains from the root to terminal
nodes. For each chain we build a simple TAG where
each transition has as input symbol the variable corre-
sponding to a node in S(starting from the root), and clock
constraints for the same transition correspond to the TCGs
associated with the edge leading to that node. Then, we
combine the resulting TAGs into a single TAG using a
“cross product” technique and we add transitions to allow
the skipping of events. Finally, we change each input sym-
bol X with the corresponding event type.4 A detailed pro-
cedure for TAG generation can be found in the Appendix.
Fig. 3 shows the TAG corresponding to the complex event
type in Example 1.

THEOREM 2. Whether an event sequence is accepted by a TAG
corresponding to a complex event type can be determined in
O(lal (S| *min(]al.(1V] * K)p))z) time, where | S|
is the number of states in the TAG, | g] is the number of
events in the input sequence, |V| is the number of vari-
ables in the longest chain used in the construction of the
automata, K is the size of the maximum range appearing in
the constraints, and p is the number of chains used in the
construction of the automata.

The proof basically follows a standard technique for
pattern matching using a nondeterministic finite automaton
(NDFA) (cf. [3, p. 328]). For each input symbol, a new set of
states that are reached from the states of the previous step is
recorded. (Initially, the set consists of all the start states.)
Note however, clock values, in addition to the states, must
be recorded. If the graph is just a chain, in the worst case,
the number of clock values that we have to record for each
state is the minimum between the length of the input se-
quence and the product of the number of variables in the
chain and the maximum range appearing in the constraints.
If the graph is not a chain we have to take into account the
cross product of the p chains used in the construction of the
TAG. Note that, even for reasonably complex event struc-
tures, the constant p is very small; hence, (V] * K)" is often
much smaller than | g].

4.3 A Naive Algorithm

Given the technical tools provided in the previous sections,
a naive algorithm for discovering frequent complex event

4. The construction would not work if we use the event types instead of
the variable symbols from the beginning; indeed we exploit the property
that the nodes of Sare all differently labeled.

ANY

i 1 1 1
W 1 = =
‘ m O< Xweek< 1 { xb_ day Xw:ck }
. Veek,

O<=x_, <=8 {pgdayxjw J
ibm-fall

ANY

types can proceed as follows: Consider all the event types
that occur in the given event sequence, and consider all the
complex types derived from the given event structure, one
from each assignment of these event types to the variables.
Each of these complex types is called a candidate complex
type for the event-discovery problem. For each candidate
complex type, start the corresponding TAG at every occur-
rence of Ey. That is, for each occurrence of E; in the event
sequence, use the rest of the event sequence (starting from
the position where E, occurs) as the input to one copy of the
TAG. By counting the number of TAGs reaching a final
state, versus the number of occurrences of E,, all the solu-
tions of the event-discovery problem will be derived.

This naive algorithm, however, can be too costly to
implement. Assume that the maximum number of event
types occurring in the event sequence and in p(X) for all
X is n, and the number of nonroot variables in the event
structure is s. Then the time complexity of the algorithm

isO(n’ « | Ok, | * Tiag), Where |aEO | is the number of occur-

rences of Ey in g and Ty, is the time complexity of the pat-
tern matching by TAGs. Clearly, if n and s are sufficiently
large, the algorithm is rather ineffective.

5 TECHNIQUES FOR AN EFFECTIVE DISCOVERY
PROCESS

Our strategy for finding the solutions of event-discovery
problems relies on the many optimization opportunities pro-
vided by the temporal constraints of the event structures.
The strategy can be summarized in the following steps:

1) eliminate inconsistent event structures,

2) reduce the event sequence,

3) reduce the occurrences of the reference event type to
be considered,

4) reduce the candidate complex event types, and

5) scan the event sequence, for each candidate complex
event type, to find out if the frequency is greater than
the minimum confidence value.

The naive algorithm illustrated earlier is applied in the
last step (step 5). Several techniques are used in the previ-
ous steps to immediately stop the process, if an inconsistent
event structure is given (1); to reduce the length of the se-
quence (2); the number of times an automaton has to be
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started (3); and the number of different automata (4). Al-
though the worst case complexity is the same as the naive
one, in practice, the reduction produced by steps 1-4 makes
the mining process effective.

While the technical tool used for step 5 is the TAG intro-
duced in Section 4.1, steps (1-4) exploit the implicit tempo-
ral relationships in the given event structure and a decompo-
sition strategy, based on the observation that if a discovery
problem has a solution, then part of this solution is a solu-
tion also for a “subproblem” of the considered one.

To derive implicit relationships, we must be able to
convert TCGs from one granularity to another, not neces-
sarily obtaining equivalent constraints, but logically implied
ones. However, for an arbitrarily given TCG, and a granu-
larity 4, it is not always possible to find a TCG, in terms
of x4 such that it is logically implied by TCG,, i.e., any pair
of events satisfying TCG; also satisfy TCG,. For example,
[m, nJo—-day is not implied by [0, 0]day no matter what m
and n are. The reason is that [0, O]day is satisfied by any
two events that happen during the same day, whether the
day is a business day or a weekend day.

In our framework, we allow a conversion of a TCG in
an event structure into another TCG if the resulting con-
straint is implied by the set of all the TCGs in the event
structure. More specifically, a TCG [m, n] u between vari-
ables X and Y in an event structure is allowed to be con-
verted into [m’, n’]v as long as the following condition is
satisfied: For any pair of values x and y assigned to X and
Y, respectively, if x and y belong to a solution of S, then
they also satisfy [m’, n’]v. As an example, consider the event
structure with three variables X, Y, and Z with the TCG
[0, O]day assigned to (X, Z) and [0, O]b-day to (X, Y) as
well as (Y, Z). It is clear that we may convert [0, O]day on
(X, 2) to [0, O]b-day since for any events x and z assigned
to X and Z, respectively, if they belong to a solution of the
whole structure, these two events must happen within the
same business day.

In Appendix A, we report an algorithm to derive implicit
constraints from a given set of TCGs. The algorithm
is based on performing allowed conversions among TCGs
with different granularities as discussed above, and on a
reasoning process called constraint propagation to derive
implicit relationships among constraints in the same
granularity.

5.1 Recognition of Inconsistent Event Structures

For a given event structure §" = (W, A, ), it is of practical
interest to check if the structure is consistent, i.e., if there
exists a complex event that matches .§°. Indeed, if an event
structure is inconsistent, it should be discarded even before
the data mining process starts.

Given an input event structure, we apply the approxi-
mate polynomial algorithm described in Appendix A
to derive implicit constraints. Indeed, if one of these
constraints is the “empty” one (unsatisfiable, independ-
ently of a given event sequence), the whole event structure
is inconsistent.

5.2 Reduction of the Event Sequence

Regarding Step 2, we give a general rule to reduce the
length of the input event sequence by exploiting the
granularities. For example, consider the event structure
depicted in Fig. 2. If a discovery problem is defined on the
substructure including only variables X, X;, and X,, the
input event sequence can be reduced discarding any event
that does not occur in a business-day.

In general, let x be the coarsest temporal type such that
for each temporal type v in the constraints and timestamp z
in the sequence, if [z]" is defined, then [z} must also be
defined, and u(zF) < »(z]"). Any event in the sequence
whose timestamp is not included in any tick of x4 can be
discarded before starting the mining process.

5.3 Reduction of the Occurrences of the Reference
Type

Regarding step 3, we give a general rule to determine

which of the occurrences of the reference type cannot be the

root of a complex event matching the given structure.

We proceed as follows: If X, is the root, consider all
the nonempty sets of explicit and implicit constraints on
(Xo, Xj), for each X; € W. Since the constraints are in terms
of granularities, for some occurrences of E; in the sequence,
it is possible that a constraint is unsatisfiable. Referring to
Example 2, if no event occurs in the sequence in the
next business-day of an IBM-rise event, this particular
reference event can be discarded (no automata is started
for it). Let N be the number of occurrences of the reference
event type in the sequence. Count the occurrences of refer-
ence events (instances of X;) for which one of the con-
straints is unsatisfiable. These are reference events that
are certainly not the root of a complex event matching
the given event structure. If these occurrences are N’ with
N'/N > 1 - y there cannot be any frequent complex event
type satisfying the given event structure and the empty
set should be returned to the user. Otherwise (N'/N <1
- %), we remove these occurrences of E; and modify y into
y'=(y *N)/(N -N'). ' is the confidence value required
on the new event sequence to have the same solution as for
the original confidence value on the original sequence.

This technique requires the derivation of implicit con-
straints. Given an event structure, there are possibly an in-
finite number of implicit TCGs. Intuitively, we want to de-
rive those that give us more information about temporal
relationships. Formally, a constraint is said to be tighter than
another if the former implies the latter. We are interested in
deriving the tightest possible implicit constraints in all of
the granularities appearing in the event structure. In single
granularity constraint networks this is usually done ap-
plying constraint propagation techniques [8]. However, due
to the presence of multiple granularities, these techniques
are not directly applicable to our event structures. In [6], we
have proposed algorithms to address this problem. Essen-
tially, we partition TCGs in an event structure into groups
(each group having TCGs in terms of the same granularity)
and apply standard propagation techniques to each group
to derive implicit TCGs between nodes that were not di-
rectly connected and to tighten existing TCGs. We then ap-
ply a conversion procedure to each TCG on each edge,
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deriving, for each granularity appearing in the event struc-
ture, an implied TCG on the same arc in terms of that
granularity. These two steps are repeated until no new TCG
is derived. More details on the algorithm are reported in
Appendix A.

5.4 Reduction of the Candidate Complex Event
Types

The basic idea of step 4 is as follows: If a complex event
type occurs frequently, then any of its subtype should also
occur frequently. (This is similar to [13].) Here by a subtype
of a complex type 7, we mean a complex event type, in-
duced by a subset of variables, such that each occurrence of
the subtype can be “extended” to an occurrence of 7. How-
ever, not every subset of variables of a structure can induce
a substructure. For example, consider the event structure in
Fig. 2 and let S" = ({Xo, X3}, {(Xo, X3)}, I'). S cannot be an
induced substructure, since it is not possible for T" to cap-
ture precisely the four constraints of that structure. This
forces us to consider approximated substructures.

Let S = (W, A, I') be an event structure and M the
set of all the temporal types appearing in T'. For
each 4 € M, let Cy be the collection of constraints
that we derive at the end of the approximate propagation
algorithm of Appendix A. Then, for each subset W' of W,
the induced approximated substructure of W’ is (W', A', T"),
where A’ consists of all pairs (X, Y) ¢ W' x W' such that
there is a path from X to Y in $" and there is at least a con-
straint (original or derived) on (X, Y). For each (X, Y) € A’,
the set I''(X, Y) contains all the constraints in C; on (X, Y)
for all £ € M. For example, I'"(X,, X3) in the previous para-
graph contains [0, 1Jweek and [1,175]hour. Note that if a
complex event matches S using events from g, then there
exists a complex event using events from a subsequence o'
of othat matches the substructure $".

By using the notion of an approximated substructure, we
proceed to reduce candidate event types as follows: Sup-
pose the event-discovery problem is (S, % E,, p). For each
variable X appearing in S, except the root X,, consider the
approximated substructure §" induced from X, and X (i.e.,
two variables). If there is a relationship between X, and X
(i.e., T'(Xo, X) # #), consider the event-discovery problem
(called induced discovery problem) (S, % Ey, ©), where o' is a
restriction of p with respect to the variables in $''. The key
observation is ([13]) that if no solution to any of these in-
duced discovery problems assigns event type E to X, then
there is no need to consider any candidate complex type
that assigns E to X. This reduces the number of candidate
event types for the original discovery problem.

To find the solutions to the induced discovery problems
is rather straightforward and simple in time complexity.
Indeed, the induced substructure gives the distance from
the root to the variable (in effect, two distances, namely the
minimum distance and the maximum distance). For each
occurrence of E,, this distance translates into a window, i.e.,
a period of time during which the event for X must appear.
If the frequency (i.e., the number of windows in which the
event occurs divided by the total number of these win-
dows) an event type E occurs is less than or equal to ¥ then
any candidate complex type with X assigned to E can be

“screened out” for further consideration. Consider the dis-
covery problem of Example 2 with the simple variation that
p=4,i.e.,all nonroot variables are free. (5", 0.8, IBM-rise,
#) is one of its induced discovery problems. T"(X,, Xj),
through the constraints reported above, identifies a win-
dow for X; for each occurrence of IBM-rise. It is easy to
screen out all candidate event types for X, that have a fre-
quency of occurrence in these windows less than 0.8.

The above idea can easily be extended to consider in-
duced approximated substructures that include more than
one nonroot variable. For each integer k = 2, 3, ..., consider
all the approximated substructures .5 induced from the
root variable and k other variables in .8, where these vari-
ables (including the root) form a subchain in § (i.e., they
are all on a particular path from the root to a particular
leaf), and 5, considering the derived constraints, forms a
connected graph. We now find the solutions to the induced
event-discovery problem (5, % Eq, o). Again, if no solution
assigns an event type E to a variable X, then any candidate
complex type that has this assignment is screened out. To
find the solutions to these induced discovery problems, the
naive algorithm mentioned earlier can be used. Of course,
any screened-out candidates from previous induced dis-
covery problems should not be considered any further. This
means that if in a previous step only k event types have
been assigned to variable X as a solution of a discovery
problem, if the current problem involves variable X, we
consider only candidates within those k event types. This
process can be extended to event types assigned to combi-
nations of variables. This process results, in practice, in a
smaller number of candidate types for induced discovery
problems.

6 EFFECTIVENESS OF THE PROCESS AND
EXPERIMENTAL RESULTS

In this section we motivate the choice of the proposed steps
in our strategy by analyzing their costs and effectiveness
with the support of experimental results.

As discussed in the introduction (related work), the al-
gorithms and techniques that can be found in the literature
cannot be straightforwardly applied to discover patterns
specified by temporal quantitative constraints (in terms of
multiple granularities) in data sequences. For this reason,
we evaluate the cost/effectiveness of the proposed algo-
rithms and heuristics per se, and by comparison with the
naive algorithm described in Section 4.3.

The first step (consistency checking) involves applying
the approximate algorithm described in Appendix A to the
input event structure. The computational complexity of the
algorithm is independent from the sequence length, and it
is polynomial in terms of the parameters of the event
structure [6]. We also conducted experiments to verify the
actual behavior of the algorithm depending on the pa-
rameters of the event structure [14]. We applied the algo-
rithm to a set of 300 randomly generated event structures
with TCG parameters in the range 0 ... 100 over eight dif-
ferent granularities. The results show that, in practice, the
algorithm is very efficient, since the average number of it-
erations between the two main steps (each is known to be
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Fig. 4. The event structure used in the experiment.

efficient) is 1.5 for graphs with up to 20 variables, while it is
only 1 for graphs with up to six variables.” We can conclude
that the time spent for this test is negligible compared with
the time required for pattern matching in the sequence. On
the contrary, if inconsistent structures are not recognized,
significant time would be spent searching the sequence for
a pattern that would never be found.

Steps 2 through 4 all require scanning the sequence, but
it is possible to perform them concurrently so that a single
scan is sufficient to conclude steps 2 and 3, and to perform
the first pass in step 4. The cost of step 2 is essentially the
time to check, for each event in the sequence, if its time-
stamp is contained in a specific precomputed granularity.
This containment test can be efficiently implemented. The
benefits of the test largely depend on the considered event
sequence and event structure. For example, if the sequence
contains events heterogeneously distributed along the time
line, while the structure specifies relationships in terms of
particular granularities, this step can be very useful, dis-
carding even most of the events in the input sequence and
dramatically reducing the discovery time. On the contrary,
if regular granularities are used in the event structure, or if
the occurrences of events in the sequence always fall into
the granularities of the event structure, the step becomes
useless. Since it is not clear how often these conditions are
satisfied, we think that the discovery system should be al-
lowed to switch on and off the application of this step de-
pending on the task at hand.

The cost of step 3 is essentially the time to check, for each
reference event in the sequence, the satisfiability of a set of
binary constraints between that event and another event in
the sequence. In terms of computation time, this is equiva-
lent to running for each constraint a small (two states)
timed automata ignoring event types. The benefit is usually
significant, since the failure of one of these tests allows one
to discard the corresponding reference event and it avoids
running on that reference event all the automata corre-
sponding to candidate event types.

The cost/benefit trade-off of step 4 is essentially meas-
ured in terms of the number and type of automata that
must be run for each reference event. Since this is the cru-
cial step of our discovery process, we conducted extensive
experiments to analyze the process behavior.

6.1 Experimental Results on the Discovery Process

In this section, we report some of the experimental results
conducted on a real data set. The interpretation and discus-
sion of the significance (or insignificance) of the discovered
patterns are out of the scope of this paper.

The data set we gathered was the closing prices of 439
stocks for 517 trading days during the period between
January 3, 1994, and January 11, 1996.° For each of the 439
trading companies in the data set, we calculated the price

5. The theoretical upper bound in [6], while polynomial, is much higher.
6. The complete data file is available from the authors.

= X2 > X3

change percentages by using the formula (py = Pg-1)/Pg-1,
where py is the closing price of day d and py-; is the closing
price of the previous trading day. The price changes were
then partitioned into seven categories: (-eo, =5 percent],
(-5 percent, -3 percent], (-3 percent, 0 percent), [0 percent,
0 percent], (0 percent, 3 percent), [3 percent, 5 percent), and
[5 percent, «). We took each event type as characterizing a
specific category of price change for a specific company.
The total number of event types in the data set was 2,978
(instead of 3,073 = 7 = 439 since not all of the 439 stocks had
price changes in all the seven categories during the period).
There were 517 business days in the period, and our event
sequence consisted of 181,089 events, with an average of
350 events per business day (instead of 439 events every
business day since some stocks started or stopped ex-
changing during the period).

Fig. 4 shows the event structure S that we used in our
experiments. The reference event type for X, is the event
type corresponding to a drop of the IBM stock of less than
3 percent (i.e., the category (-3 percent, 0 percent)). There
are no assignments of event types to variables X;, X,, and
X3. The minimum confidence value we used was 0.7 (i.e.,
the minimum frequency is 70 percent) except for the last
experiment where we test the performance of the heuristics
under various minimum confidence values. The data min-
ing task was to discover all the combinations of frequent
event types E4, E,, and E; with the constraints that

1) E; occurred after E, but within the same or the next
two business days,

2) E, occurred the next business day of E; or the busi-
ness day after, and

3) E; occurred after E, but in the same business week
of E,.

The choices we made for the reference type and the con-
straints were arbitrary and the results regarding the per-
formance of our heuristics should apply to other choices.

The machine we used in the experiments was a Digital
AlphaServer 2100 5/250, Alpha AXP symmetric multiproc-
essing (SMP) PCI/EISA-based server, with three 250 MHz
CPUs (DECchip 21164 EV5) and four memory boards (each
is 512 MB, 60 ns, ECC; total memory is 2,048 MB). The op-
erating system was a Digital UNIX V3.2C.

We started our experiments to see the behavior of pat-
tern matching under a different number of candidate types.
We arbitrarily chose 82,088 candidate types derived from
the event structure shown in Fig. 4 and performed eight
runs against 1/8 to 8/8 of these candidate types. Fig. 5
shows the timing results. It is clear that the execution time
is linear with respect to the number of candidate types.
(This is no surprise since each candidate type is checked
independently in our program. How to exploit the com-
monalities among candidate types to speed up the pattern
matching is a further research issue.) By observing the
graph, we found that in this particular implementation, the
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Fig. 5. Timing is linear with respect to the number of candidate event types.

number of candidate types we can handle within a reason-
able amount of time, say in five hours of CPU time under
our rather powerful environment, is roughly 10 million
candidate types. As a reference point, we extrapolated from
the graph that using the naive algorithm, which tries all
possible 2,9783 (or roughly 26 billion) candidate types, the
time needed is more than 10 years!

In the next experiment, we focused our attention on
the reduction of the candidate event types by using sub-
structures. The experiment was to test whether discovering
substructures helps to reduce the number of candidate
event types and thus to cut down the total computation
time. We display our detailed results in Table 1. The second
column of Table 1 shows the induced substructures consid-
ered at each stage of our discovery process. We explored six
substructures before the original one (shown as stage 7 in
the table).”

The third column shows the number of candidate event
types that we need to consider if the naive algorithm
(Section 4.3) is used. The number of candidate event types
under the naive algorithm is simply the multiplication of
the combinations of candidate event types for each nonroot
variable (2,978 if s is the number of nonroot variables).

The fourth column shows the number of candidate event
types under our heuristics. The basic idea is to use the pre-
vious stages to screen out event types (or combination of
event types) that are not frequent. By Table 1, the number of
candidate event types under our heuristics is much smaller
than that under the naive algorithm in the cases of two and

7. From the application of the algorithm to derive implicit temporal con-
straints, the substructures of our example should have an edge from the
root to each other variable in the substructure, and two constraints (one for
each temporal type in the experiment, namely b-day and b-week) labeling
each edge. In the table, for simplicity, we omit some of the edges and one of
the two constraints on each edge, since it is easily shown that in this exam-
ple, for each edge, one constraint (the one shown) implies the other (the one
omitted), and some edges are just “redundant,” i.e., implied by other edges.

three variables. For example, since the number of frequent
types for the combination X,, X;, and X, are, respectively, 1,
323, and 472, it follows that the number of candidate event
types we needed to consider in Stage 4 is 152,456 (= 1 » 323 =
472), instead of 8,868,484 (=1 x 2,978 = 2,978). Thus, we only
needed to consider 2 percent of the event types required
under the naive algorithm. The number of candidate event
types for the original event structure we needed to consider
in the last stage was only 82,088, instead of 2.64 x 10", The
total number of candidate types to be considered using our
heuristics was 325,216.

In the experiment, the first three substructures we ex-
plored were those with a single nonroot variable. We found
frequent event types for each induced substructure. The
next stage (Stage 4) was the one with variables X,, X,, and
X,. The number of complex event types was 267, while the
single event types for X; and X, were only 59 and 70, re-
spectively. Hence, in stage 5, we only needed to consider as
candidate event types 42,480 (= 1 » 59 x 720) different event
types, instead of 232,560 (= 1 * 323 » 720) or even 8,868,484
(= 1% 2,978 = 2,978). Similarly, we found in stage 5 that the
number of event types for X; was 587. In stage 6, we only
needed to consider those combinations of event types e,
and e; with the condition that there existed e; such that
(e1, &) was frequent in stage 4 and (e;, e;) was frequent in
stage 5. We only found 39,258 candidate event types. The
number of candidate event types in the last stage was cal-
culated by taking all the pairs from stages 4, 5, and 6, and
performing a “join”; that is, a combination of e, e,, and e;
would be considered as a candidate event type if and only
if (e;, e,) appeared in the result of stage 4, (e;, e3) in stage 5,
and (e,, e3) in stage 6.
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TABLE 1
REDUCTION OF CANDIDATE EVENT TYPES
No. of candidate types No. of frequent | Time
Stage Substructure Naive algorithm | Using heuristics event types (sec.)
[0.2]b-day
1 X0 — X1 2,978 2,978 323 28.3
[1.4]b-day
2 X0 —Xx2 2,978 2,978 472 39.3
[1.8]b-day
—_—
3 X0 X3 2,978 2,978 720 54.6
[0,2]b-day [1,2]b-day
4 X0 X1 8,868,484 152,456 267 1751.1
[0,2]b-day [1,6]b-day
5 X0 X1 X3 8,868,484 42,480 28,371 590.2
[1,4]b-day [0,0]b-week
6 X0 X2 X3 8,868,484 39,258 18,042 516.0
[0,2]b-day [0,0]b-week
X0 X1 X2 X3
7 [1,2]b-day 2.64*101° 82,088 2 1104.5
Total 325,216 4084.0
: 0%
0% [0.2]b-day 0% [1.2Ib-day o [0.01b-week GM {4,
BM{,, ——— KMBy,, —— = - ——— f+3%
IT o

Legend:
IBM = Intl Business Machines

KMB = Kimberly Clark Corp
AVP = Avon Products

GM = General Motors Corp

I = First Interstate Bancorp

+ 0% Price drops in (-3%, 0%)
-3%

+3% X X . .
* Price rises in (0%, +3%)
0%

Fig. 6. The two frequent event combinations discovered in the experiment.

The fifth column gives the number of (complex) event
types discovered which are frequent (with minimum confi-
dence 0.7). These event types were used in later stages to
screen out event types as explained above.

Finally, the sixth column gives the number of seconds
used in the discovery process for each stage and the total.

Fig. 6 shows the two complex event types found in the
last stage.
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Fig. 7. Growth of candidate event types.

In our last experiment we varied the total number of
event types that we have to consider for each variable. We
executed 10 runs which assumed, respectively, that each
variable can take any one in the given set of 100, 200, ...,
1,000 event types. (Thus, under the naive algorithm, we
have to consider 100°, 200%, ..., 1,000° combinations of event
types, respectively.) The goal of this experiment is to see the
behavior of our heuristics with respect to the number of
event types in the data set, i.e., “input” event types. Fig. 7
shows the number of candidate event types our algorithm
has to consider under different numbers of input event
types. A similar curve for the naive algorithm is too steep
to be represented in the same graph. Indeed, 10 candidate
event types have to be considered for 200 input event
types. The quadratic fitting curve in Fig. 7 is defined by the
equation8

y = 0.03%° - 3.51x + 568.1

while the curve describing the behavior of the naive algo-
rithmisy = x°. We observe that

1) there is a significant difference between the numbers
of candidate types to be considered, and

2) the growth of the number of candidate types under
our heuristics is slower than the growth under the
naive algorithm.

7 DiscussIiON AND CONCLUSION

In this paper, we introduced and studied the notion of tem-
poral constraints with granularities and event structures.
We also presented a timed automaton with granularities for

3

8. If the cubic fitting is used, the coefficient of the term x* is negligible.

finding event sequences that match event structures. And
lastly, we defined event-discovery problems and provided a
practical procedure that exploits the properties of granu-
larities and event structures.

It is important to note that a real system can only treat
finite temporal types or infinite temporal types that have
finite representations. Hence, a real system can use only a
subset of the temporal types that we have defined. Various
proposals on representing granularities have appeared in
the literature (e.g., [15], [12], [7]). The granularities expressi-
ble in these languages are all instances of our temporal
types. Furthermore, software packages that implement cal-
endars are available [16]. However, all the algorithms of
this paper are implementable in a system using any of the
above representations or systems.

The event discovery problem can easily be extended in
two different directions. First, the event type E, in the
event-discovery problem needs not be a “regular” event
type. It can be the event type, say, “the beginning of a
week.*“ By using this, we can discover complex event types
such as “What happens in most of the weeks?“ Another
direction is to include certain constraints on the event types
allowed on the variables of an event structure; for example,
two or more variables could be constrained to be assigned
to the same (or different) event types. We can easily adapt
our procedure to accommodate these extensions.

Another research direction is to study the optimization
of data mining algorithms when an interactive user interface
is used. As mentioned in the introduction, we believe that
the complex temporal patterns are used only after the user
explores the data set using simpler temporal patterns. That
is, temporal patterns “evolve” from simple ones to complex
ones. Hence, optimization strategies that exploit such an
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evolutionary pattern specification process will be an inter-
esting research topic.

APPENDIX A
DERIVING IMPLICIT CONSTRAINTS WITH
GRANULARITIES

We consider here an approximate algorithm for checking
consistency and deriving implicit constraints. We proved in
[5] that it is NP-hard to decide if an arbitrary event struc-
ture is consistent. Hence, it is not likely that the tightest
possible implicit constraints can be computed in polyno-
mial time (since an event structure is inconsistent iff each
tightest constraint is false, i.e., unsatisfiable), and this moti-
vates the choice of an approximate algorithm. The approach
we take is called constraint propagation. However, tradi-
tional techniques for constraint propagation (e.g., [8]) have
to be integrated with procedures to convert among TCGs
with different granularities.

A.1 Conversion of Constraints in Different
Granularities

Consider the problem of converting a constraint [m, n]z
of an event structure % into an implied (i.e., looser)
constraint in terms of a granularity u,. If we only have
granularities—like, e.g., minute, hour, and day—which
have fixed conversion factors among them, then the con-
version algorithm is trivial. However, if there are types with
no fixed conversion factors, incomparable types like week
and month, and/or types with “gaps” like b-day, the con-
version becomes more complex. For example, it is easy
to convert [0, O]day into [0, 23]hour, but less trivial from
[1, 6]b-day into [0, 2]week.

In Section 5, we explained that certain conversions are
not allowed since no constraints in the target granularity
may be implied by the ones in the given event structure. To
ensure that only allowed conversions are performed by the
algorithm, we impose a condition on the target granularity
of the conversion. Given an event structure, we assign to
each variable X a temporal type uy obtained as the glb9 of
all the temporal types appearing in TCGs involving X.
Then, a TCG on variables X and Y can be converted in
terms of a target granularity v only if v covers a span
of time equal or larger than the span of time covered
by ux and by . For example, if yux = b-week and u, =
week we can convert a TCG on X and Y, into a TCG in
terms of week or month, but not into a constraint in terms
of week-ends or b-day.

Even when the above condition is guaranteed, an algo-
rithm to perform conversions into equivalent constraints
does not exist. Indeed, consider a structure with two event
variables X and Y with the TCG [m, n]b-day. Replacing
this constraint with any conversion in terms of seconds
would result in an event structure where the information
specifying that the events for X and Y must occur in a busi-
ness day is lost. That is, the two event structures would not
be equivalent. Hence, we are satisfied with a conversion

9. In Section 2, we pointed out that the set of temporal types forms a lat-
tice with respect to the finer-than relation. It follows that for any finite set of
temporal types there exists a type that is their greatest lower bound.

algorithm that allows us to obtain an implied structure in
the target granularity.

Several algorithms can be used to perform conversions
into implied constraints. The tighter are the resulting con-
straints, the better is the precision of the algorithm. Differ-
ent approximations can be obtained depending on the in-
formation available on the structure of the granularities and
their relationships. We do not provide a specific one here,
but we refer the interested reader to [6] where one ap-
proximate conversion algorithm can be found.

A.2 An Approximate Algorithm for TCGs
Propagation

Let S = (W, A, T') be an event structure and M the set of
temporal types appearing in I'. The algorithm proceeds as
follows. It first partitions TCGs in an event structure into
groups, each group having TCGs in the same temporal
type. That is, for each x4 in M, let C, be the set of all the
constraints X —=Y € [m, n], where X, Y are in W and
[m, n] x € T(X, Y). Now, the propagation within C, is a
problem known as the Simple Temporal Problem [8]. We
apply the path consistency algorithm [8] within each group.
Since constraints expressed in a granularity could imply
constraints in other granularities, we should try to convert
them and add the derived constraints to the corresponding
groups. Hence, for each pair of temporal types g and v in
M such that a conversion is allowed, we convert each
constraint in Cy into one in terms of v and add it into
Cy. The process is repeated with the path consistency algo-
rithm and the conversion, until no new constraints appear
in any group.

The above algorithm is sound if the converted constraints
are logically implied by the original ones. By sound we
mean that if a complex event matches the given event
structure S = (W, A, I), then it also matches ' = (W, A’,
I"), where A" and T" are given by the algorithm (e.g., if X
-Y e€[m, n] is in Cy then (Y, X) € A" and [m,n]
i e T'(Y,X)).

The aforementioned algorithm is an approximate propa-
gation for two reasons. First, translation between groups
cannot be done precisely since the conversion among
granularities is not always precise. Second, the set of tem-
poral types we use are only those that appear in the event
structure. The algorithm may derive tighter constraints (in
the sense of logical implication) if the translation is done
more precisely using additional temporal types.

As shown in [6], the proposed algorithm is sound, ter-
minates, and requires time polynomial in the size of the
constraint graph.

APPENDIX B
PROOFs

THEOREM 1. Given a complex event type 7, there exists a timed
automaton with granularities TAG z such that 7~ occurs in
an event sequence o iff TAG has an accepting run over
o. This automaton can be constructed by a polynomial-time
algorithm.

PrROOF. We give the procedure for the construction of the
timed automata TAG 4 corresponding to a complex
event type 77



INPUT: A complex event type 7 = (S, ¢), where S=
(W, A, T) and ¢ is a mapping assigning to each vari-
able the corresponding event type.

OUTPUT: A TAG such that an event sequence o is
accepted by the TAG iff the complex event type 7 oc-
cursin o.

METHOD:

Step 1. Decompose . into the minimal number of
chains such that:

1) each chain starts from the root and ends with a
variable having no outgoing arcs, and

2) each arc of the graph is contained in at least one
chain.

Step 2. For each chain | with the variables X, ..., X

n

(in this order), build a TAG A' = (W, S, {s}}, C', T,

| | .
{Sln.)’ where S' = {s, ..., Sln.}’ C = {X, oo X, }if
My, ..., us are all the temporal types appearing in the

constraints of the chain, and T' consists of the follow-
ing transitions:

1) (s, sy, Xy, c', true), and
2) (s}_l, s}, X, C', 5'J-> for each j =2, ..., n,, where 5'1 is

the conjunction /\[m,n]ﬂer(xj_l,xj)(m < xL < n). Note

that different clocks are used for each chain and all
the clocks are reset at each transition.

Step 3. Combine all A'into a single TAG by using a
“cross product” technique as follows: Assume there
are k chains. Then the resulting TAG is

A=W,S,{s; ~ 551 C U...UC T {5, ... sk ],

N

where S = {sl--- sklsI e §' for each I} and T consists of
all the transitions (s, s', X, 4, &, with X being in W,
that satisfy the following two conditions:

1) For each chain |, if the corresponding TAG contains

a transition (s}_l, s}, X, C! 6'j>, then s contains the

label s}_l, s' contains the label s}, c'c 4 and 5'1 isa
conjunctin &,

2) A and ¢ are the minimal sets satisfying these require-
ments.

Step 4. According to the mapping ¢ substitute each
input symbol X in the transitions of the automata ob-
tained in the previous step with the event type sym-
bol ¢(X). Note that some of the variable symbols can

be mapped to the same event type.10 For each state s
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in the automaton, we add a reflexive transition s, s, e,
@, true) (i.e., a loop) for each e € E. This last step is to
allow the automaton to “skip” events, so that an event
sequence is accepted by this final automaton if a sub-
set of its events is accepted by the automaton built at
step 3 above.

It is clear from the procedure that the automata can
be constructed in polynomial-time. It is also easy to
show that if the event sequence o does not contain
simultaneous events, 7 occurs in an event sequence o
iff TAG, has an accepting run over o . With a
straightforward extension of the above TAG con-
struction and using the event sequence as a set of
elements of the form (E,, ..., E,, 1), i.e., all the event
types that occur at the same time are combined to-
gether, we can eliminate the restriction to nonsimul-
taneous events. The basic idea is to find the “O-
length” paths from the TAG built at step 4 in the
above procedure and add a transition that:

1) the time elapsed must be 0, and
2) the event types that fired this 0-length transition
must contain all the event types in this path. O

THEOREM 2. Whether an event sequence is accepted by a TAG

corresponding to a complex event type can be determined in
O(lal *(IS] *min(]al, (1V] * K)p))z) time, where | S]
is the number of states in the TAG, | g] is the number of
events in the input sequence, | V| is the number of vari-
ables in the longest chain used in the construction of the
automata, K is the size of the maximum range appearing in
the constraints, and p is the number of chains used in the
construction of the automata.

ProoOF. The TAG obtained from a complex event type is

nondeterministic. We simulate the nondeterministic
TAG using a standard technique presented in [3, page
328]. The standard simulation of a NDFA by a DFA
stores a set of states. For each input symbol, the algo-
rithm scans the states and for each state scanned, con-
sider all possible transitions and generate another set
of states. So, for each state, | S| is needed if S is the set
of states. Hence, |S|2 time is needed for each input
symbol, and the complexity of the whole pattern
matching is O(] o] * |S|2). Consider first a simple
case for our simulation: The complex event type is
representable as a chain. The corresponding automa-
ton will have a transition from each nonstarting state
to the same state (i.e., loops), labeled with all the
event types as input symbols. Hence, it will be non-
deterministic, since another outgoing transition la-
beled with one of the event types will also be present.
If a transition from state S1 to state S2 is labeled with
an event type, a constraint k; < xy < k,, and a reset on
Xy, to perform the simulation we have to consider
k, — k; new pairs (state, clocks-assignment). If the
transition has more than one constraint and clock, the
number of new “states” equals the size of the maxi-
mum range in the constraints. Since in our construc-

tion from the chain the number of transitions leading
to a different state equals the number of variables

10. The construction would not work if we use the event types instead of
the variable symbols from the beginning; indeed we exploit the property
that the nodes of the constraint graph are all differently labeled.
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(IV1) in the chain, an upper bound on the number of
“states that we need to record in the simulation is
[ V] * Kwhere K is the maximum range in all the con-
straints of the chain. It is also possible that | g] < | V]
* K, where | g] is the number of events in the input.
Since the different values in clocks are essentially
given by the events in the input, in this case the num-
ber of “states” that we need to record in the simula-
tion is | o]. If we use the analogy with the standard
simulation of NDFA by DFA, for the TAG corre-
sponding to the chain this translates into O(]g] *
(ISl * min(jal, V] * K))z) where o is the event se-
quence (possibly reduced), and |S] is the number of
states in the TAG. Now, let’s consider a general com-
plex event type. Our construction obtains the corre-
sponding TAG as a “crossproduct” of the TAGs corre-
sponding to the chains in which the complex event
type has been decomposed. Hence, the upper bound
for the “states” that we have to record translates to
(IV1 * K)°, where p is the number of chains in the
crossproduct. The global simulation, then, analo-
gously to standard simulation of NDFA would have a
complexity upper bound of O(] a] = (]S]| * min(] d],
(VI =K. O
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