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Abstract. We present MOWCATL, an efficient method for mining fre-
quent sequential association rules from multiple sequential data sets with
a time lag between the occurrence of an antecedent sequence and the
corresponding consequent sequence. This approach finds patterns in one
or more sequences that precede the occurrence of patterns in other se-
quences, with respect to user-specified constraints. In addition to the
traditional frequency and support constraints in sequential data mining,
this approach uses separate antecedent and consequent inclusion con-
straints. Moreover, separate antecedent and consequent maximum win-
dow widths are used to specify the antecedent and consequent patterns
that are separated by the maximum time lag.
We use multiple time series drought risk management data to show that
our approach can be effectively employed in real-life problems. The ex-
perimental results validate the superior performance of our method for
efficiently finding relationships between global climatic episodes and lo-
cal drought conditions. We also compare our new approach to existing
methods and show how they complement each other to discover associ-
ations in a drought risk management decision support system.

1 Introduction

Discovering association rules in sequences is an important data-mining problem
that is useful in many scientific and commercial domains. Predicting events and
identifying sequential rules that are inherent in the data help domain experts to
learn from past data and make informed decisions for the future. Several differ-
ent approaches have been investigated for sequential data mining [1], [2], [3], [4],
[5]. Algorithms for discovering associations in sequential data [2], and episodal
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associations [1], [3] use all frequent episodes. The entire set of association rules is
produced and significance criterion such as J-measure for rule ranking are used to
determine the valuable rules [2]. An approach that uses temporal constraints on
transactional sequences was presented in [5]. Our earlier methods, Gen-FCE and
Gen-REAR, use inclusion constraints with a sliding window approach on event
sequences to find the frequent closed episodes and then generate the represen-
tative episodal association rules from those episodes. We propose a generalized
notion of episodes where the antecedent and consequent patterns are separated
by a time lag and may consist of events from multiple sequences.

In this paper, we present a new approach that uses Minimal Occurrences
With Constraints And Time Lags (MOWCATL), to find relationships between
sequences in the multiple data sets. In addition to the traditional frequency and
support constraints in sequential data mining, MOWCATL uses separate an-
tecedent and consequent inclusion constraints, along with separate antecedent
and consequent maximum window widths, to specify the antecedent and conse-
quent patterns that are separated by a maximum time lag. The MINEPI algo-
rithm was the first approach to find minimal occurrences of episodes [3].

Our approach is well suited for sequential data mining problems that have
groupings of events that occur close together, but occur relatively infrequently
over the entire dataset. They are also well suited for problems that have periodic
occurrences when the signature of one or more sequences is present in other se-
quences, even when the multiple sequences are not globally correlated. The anal-
ysis techniques developed in this work facilitate the evaluation of the temporal
associations between episodes of events and the incorporation of this knowledge
into decision support systems. We show how our new approach complements the
existing approaches to address the drought risk management problem.

2 Events and Episodes

For mining, sequential datasets are normalized and discretized to form subse-
quences using a sliding window [2]. With a sliding window of size δ, every nor-
malized time stamp value at time t is used to compute each of the new sequence
values yt−δ/2 to yt+δ/2. Thus, the dataset is divided into segments, each of size
δ. The discretized version of the time series is obtained by using a clustering
algorithm and a suitable similarity measure [2]. We consider each cluster iden-
tifier as a single event type, and the set of cluster labels as the class of events
E. The new version of the time series is called an event sequence. Formally, an
event sequence is a triple (tB , tD,S) where tB is the beginning time, tD is the
ending time, and S is a finite, time-ordered sequence of events [3], [6]. That
is, S = (etB

, etB+1p
, etB+2p

, . . . etB+dp
= etD

), where p is the step size between
events, d is the total number of steps in the time interval from [tB , tD], and
D = B + dp. Each eti

is a member of a class of events E, and ti ≤ ti+1 for all
i = B, . . . ,D − 1p. A sequence of events S includes events from a single class of
events E.
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Fig. 1. Example multiple event sequences

Example 1. Consider the event sequences of 1-month and 3-month Standard-
ized Precipitation Index (SPI) values from Clay Center, Nebraska from Jan-
uary to December 1998 shown in Figure 1. SPI values show rainfall deviation
from normal for a given location at a given time [7]. For this application, a
sliding window width of 1 month was used, and the data was clustered into
7 clusters: A. Extremely Dry (SPIvalue ≤ −2.0), B. Severely Dry (−2.0 <
SPIvalue ≤ −1.5), C. Moderately Dry (−1.50 < SPIvalue ≤ −0.5), D. Nor-
mal (−0.5 < SPIvalue < 0.5), E. Moderately Wet (0.5 ≤ SPIvalue < 1.5), F.
Severely Wet (1.5 ≤ SPIvalue < 2.0, and G. Extremely Wet (SPIvalue ≥ 2.0).

When multiple sequences are used, each data set is normalized and discretized
independently. The time granularity is then converted to a single (finest) granu-
larity [1] before the discovery algorithms are applied to the combined sequences.

An episode in an event sequence is a partial order defined on a set of events
[3], [6]. It is said to occur in a sequence if events are consistent with the given
order, within a given time bound (window width). Formally, an episode P is a
pair (V, type), where V is a collection of events. An episode is of type parallel
if no order is specified and of type serial if the events of the episode have a
fixed order. An episode is injective if no event type occurs more than once in the
episode.

3 The MOWCATL Method

The MOWCATL method shown in Figure 2, finds minimal occurrences of
episodes and relationships between them and requires a single database pass
as in MINEPI algorithm[3]. Larger episodes are built from smaller episodes by
joining episodes with overlapping minimal occurrences, which occur within the
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specified window width. However, our approach has additional mechanisms for:
(1) constraining the search space during the discovery process, (2) allowing a
time lag between the antecedent and consequent of a discovered rule, and (3)
working with episodes from across multiple sequences. Our focus is on finding
episodal rules where the antecedent episode occurs within a given maximum
window width wina, the consequent episode occurs within a given maximum
window width winc, and the start of the consequent follows the start of the
antecedent within a given maximum time lag. This allows us to easily find rules
such as “if A and B occur within 3 months, then within 2 months they will be
followed by C and D occurring together within 4 months.”

1) Generate Antecedent Target Episodes of length 1 (ATE1,B);
2) Generate Consequent Target Episodes of length 1 (CTE1,B);
3) Input sequence S, record occurrences of ATE1,B and CTE1,B episodes;
4) Prune unsupported episodes from ATE1,B and CTE1,B;
5) k = 1;
6) while (ATEk,B �= ∅) do
7) Generate Antecedent Target Episodes ATEk+1,B from ATEk,B
8) Record each minimal occurrence of the episodes less than wina;
9) Prune the unsupported episodes from ATEk+1,B;
10) k++;
11) Repeat or execute in parallel, Steps 5 - 11 for

consequent episodes, using CTEk+1,B and winc;
12) Generate combination episodes CEB from ATEB × CTEB;
13) Record the combination’s minimal occurrences that occur within lag;
14) Return the supported lagged episode rules in CEB

that meet the min conf threshold;

Fig. 2. MOWCATL Algorithm.

Our approach is based on identifying minimal occurrences of episodes along
with their time intervals. Given an episode α and an event sequence S, we say
that the window w = [ts, te) is a minimal occurrence of α in S, if: (1) α occurs
in the window w, and (2) α does not occur in any proper subwindow of w.
The maximal width of a minimal occurrence for both the antecedent and the
consequent are fixed during the process, and will measure the interestingness of
the episodes.

The sequence S can be a combination of multiple sequences S1, S2, . . . , Sk. An
episode can contain events from each of the k sequences. Additionally, combina-
tion events are created with events from different sequences that occur together
at the same timestamp. When finding minimal occurrences, a combination event
is considered as a single event. The support of an episode α is the number of min-
imal occurrences of α. An episode α is considered frequent if its support meets
or exceeds the given minimum support threshold min sup. After the frequent
episodes are found for the antecedent and the consequent independently, we
combine the frequent episodes to form an episode rule.

Definition 1. An episode rule r is defined as an expression α[wina] ⇒lag

β[winc], where α and β are episodes, and wina, winc, and lag are integers.
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For each frequent antecedent episode α we join its minimal occurrences with
each minimal occurrence of each frequent consequent episode β, as long as the
starting time of the minimal occurrence for β is after the starting time of the
minimal occurrence of α and no later than the ((starting time of α) + lag). The
occurrence of α must end before the occurrence of β ends. The number of events
in episodes α and β may differ. The informal interpretation of the rule is that if
episode α has a minimal occurrence in the interval [ts, te), with te − ts ≤ wina,
and β has a minimal occurrence in the interval [tr, td), with td − tr ≤ winc,
and tr is in the range [ts+1, ts+lag], and te < td, then the rule r has a minimal
occurrence in the interval [ts, td).

The confidence of an episode rule r = α[wina] ⇒lag β[winc] in a sequence
S with given windows wina, winc, and lag is the conditional probability that
β occurs, given that α occurs, under the time constraints specified by the rule.
The support of the rule is the number of times the rule holds in the database.

Example 2. The MOWCATL method generates minimal occurrences and episo-
dal rules shown in Table 1 when applied to event sequences S given in Figure 1,
with wina = 3, min sup = 2, winc = 3, lag = 1, with the SPI1 sequence as the
antecedent and the SPI3 sequence as the consequent for parallel episodes. The
events are the cluster labels described in Example 1.

Table 1. Sample MOWCATL episodes, minimal occurrences, and rules

Episode/Rule Minimal occurrences Support Confidence
1C 1-1, 5-5, 9-9 3
1D 2-2, 4-4, 6-6, 8-8, 10-10 5
1E 3-3, 11-11 2
3D 2-2, 3-3, 4-4, 5-5, 6-6, 11-11, 12-12 7
3F 7-7, 8-8, 9-9 3

1C,1D 1-2, 4-5, 5-6, 8-9, 9-10 5
1C,1E 1-3, 9-11 2
1D,1E 2-3, 3-4, 10-11 3
3D,3F 6-7, 9-11 2

1C,1D,1E 1-3, 3-5, 9-11 3
1C,1D ⇒lag=1 3D,3F (5-6,6-7), (8-9,9-11) 2 .4

1C,1D ⇒lag=1 3D (1-2,2-2), (4-5,5-5), (5-6,6-6) 3 .6
1D,1E ⇒lag=1 3D (2-3,3-3), (3-4,4-4), (10-11, 11-11) 3 1

1C ⇒lag=1 3D (1-1,2-2), (5-5,6-6) 2 .67
1D ⇒lag=1 3D (2-2,3-3), (4-4,5-5), (10-10, 11-11) 3 .6
1D ⇒lag=1 3F (6-6,7-7), (8-8,9-9) 2 .4
1E ⇒lag=1 3D (3-3,4-4), (11-11,12-12) 2 1

4 The Gen-FCE and the Gen-REAR Methods

Previously, we presented the Gen-FCE and Gen-REAR methods for the drought
risk management problem [8].Gen-FCE, defines a window on an event sequence S
as an event subsequenceW = {etj , . . . , etk

}, where tB ≤ tj , and tk ≤ tD+1 as in
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theWINEPI algorithm[3], [6]. The width of the windowW is width(W ) = tk−tj .
The set of all windows W on S, with width(W ) = win is denoted as W(S, win).
The window width is pre-specified. The frequency of an episode is defined as the
fraction of windows in which the episode occurs. Given an event sequence S, and
a window width win, the frequency of an episode P of a given type in S is:

fr(P,S, win) = | w ∈ W(S, win) : P occurs in w |
| W(S, win) |

Given a frequency threshold min fr, P is frequent if fr(P,S, win) ≥ min fr.
Closure of an episode set X, denoted by closure(X), is the smallest closed
episode set containing X and is equal to the intersection of all frequent episode
sets containing X. Gen-FCE generates frequent closed target episodes with re-
spect to a given set of Boolean target constraints B, an event sequence S, a
window width win, an episode type, a minimum frequency min fr, and a win-
dow step size p. We use the set of frequent closed episodes FCE produced from
the Gen-FCE algorithm to generate the representative episodal association rules
(REAR) that cover the entire set of association rules [9].

Using our techniques on multiple time series while constraining the episodes
to a user-specified target set, we can find relationships that occur across the
sequences. Once the set of representative association rules is found, the user may
formulate queries about the association rules that are covered (or represented)
by a certain rule of interest for given support and confidence values. These
techniques can be employed in many problem domains, including drought risk
management.

5 Drought Risk Management – An Application

Drought affects virtually all US regions and results in significant economic, social,
and environmental impacts. According to the National Climatic Data Center,
the losses due to drought are more than any other severe weather disaster. Given
the complexity of drought, where the impacts from a drought can accumulate
gradually over time and vary widely across many sectors, a well-designed decision
support system is critical to effectively manage drought response efforts.

This work is part of a Digital Government project at UNL that is developing
and integrating new information technologies for improved government services
in the USDA Risk Management Agency (RMA) and the Natural Resources Con-
servation Service. We are in the process of developing an advanced Geospatial
Decision Support System (GDSS) to improve the quality and accessibility of
drought related data for drought risk management [10]. Our objective is to in-
tegrate spatio-temporal knowledge discovery techniques into the GDSS using a
combination of data mining techniques applied to geospatial time-series data.

6 Experimental Results and Analysis

Experiments were designed to find relationships between drought episodes at
the automated weather station in Clay Center, NE, and other climatic episodes,
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from 1949-1999. There is a network of automated weather stations in Nebraska
that can serve as long-term reference sites to search for key patterns and link
to climatic events. We use historical and current climatology datasets, includ-
ing 1) Standardized Precipitation Index (SPI) data from the National Drought
Mitigation Center (NDMC), 2) Palmer Drought Severity Index (PDSI) from the
National Climatic Data Center (NCDC), 3) North Atlantic Oscillation Index
(NAO) from the Climatic Research Unit at the University of East Anglia, UK,
4) Pacific Ocean Southern Oscillation Index (SOI) and Multivariate ENSO Index
(MEI) available from NOAA’s Climate Prediction Center, and 5) Pacific/North
American (PNA) Index and Pacific Decadal Oscillation (PDO) Index available
from the Joint Institute for the Study of the Atmosphere and Ocean.

The data for the climatic indices are grouped into seven categories, i.e. ex-
tremely dry, severely dry, moderately dry, near normal, moderately wet, severely
wet, and extremely wet. In our study, the 1-month, 3-month, 6-month, 9-month,
12-month SPI, and the PDSI values are grouped into the same seven categories
to show the precipitation intensity relative to normal precipitation for a given
location and a given month. The SOI, MEI, NAO, PDO, and PNA categories
are based on the standard deviation from the normal and the negative values
are considered to show the dry periods.

After normalizing and discretizing each dataset using the seven categories
above, we performed experiments to find whether the method discovers interest-
ing rules from the sequences, and whether the method is robust. Several window
widths, minimal frequency values, minimal confidence values, and time lag values
for both parallel and serial episodes were used. We specified droughts (the three
dry categories in each data source) as our target episodes. For MOWCATL, we
used the global climatic indices (SOI, MEI, NAO, PDO, and PNA) as our an-
tecedent data sets, and the local precipitation indices (SPI1, SPI3, SPI6, SPI9,
SPI12, and PDSI) as our consequent data sets. The experiments were ran on
a DELL Optiplex GX240 2.0GHz PC with 256 MB main memory, under the
Windows 2000 operating system. Algorithms were coded in C++.

Episodes with time lags fromMOWCATL are useful to the drought risk man-
agement problem when trying to predict future local drought risk considering the
current and past global weather conditions. Table 2 represent performance statis-
tics for finding frequent drought episodes with various support thresholds using
the MOWCATL algorithm. MOWCATL performs extremely well when finding
the drought episodes. At a minimum support of .020 for parallel episodes, the
algorithm only needs to look through the 212 candidate drought episodes to find
the 109 frequent drought episodes. Whereas, using no constraints it would need
to look through 3892 candidate episodes to find 2868 total frequent episodes.

Gen-FCE episodes are useful to the drought risk management problem when
considering events that occur together, either with order (serial episodes), or
without order specified (parallel episodes). Table 3 represent performance statis-
tics for finding frequent closed drought episodes with various frequency thresh-
olds using the Gen-FCE algorithm. As shown, the number of frequent closed
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Table 2. Performance characteristics for parallel and serial drought episodes and rules
with MOWCATL, Clay Center, NE drought monitoring database, wina = 4 months,
winc = 3 months, and lag = 2 months, and min conf = 25%.

Parallel Serial
Min. Total Freq. Distinct Total Total Frequent Distinct Total

support cand. episodes rules time (s) cand. episodes rules time (s)
0.005 930 732 98 3 9598 1125 174 34
0.007 716 575 41 3 6435 621 58 33
0.010 452 288 10 2 4144 275 15 32
0.013 332 192 7 1 3457 168 6 32
0.016 254 142 1 1 2805 109 1 31
0.020 212 109 1 1 2637 83 1 30

episodes decreases rapidly as the frequency threshold increases as expected from
the nature of drought.

Tables 2 and 3 also show the number of distinct rules generated for these algo-
rithms. As shown, the number of rules between global climatic drought episodes
and local drought at Clay Center, NE decreases rapidly as the frequency and
support levels increase. In fact, there was only one parallel drought rule out of
1954 total rules at a 25% confidence level for a support threshold of 0.020 using
the MOWCATL algorithm.

Examples of how the window widths influence the results are shown in Ta-
ble 4. The MOWCATL algorithm finds a significant number of patterns and
relationships for all window widths specified. In general, wider combined win-
dow widths wina, winc, produce more patterns and relationships, but with less
significant meaning. With a 2 month lag in time, the MOWCATL algorithm dis-
covers 142 parallel drought episodal rules and 199 serial drought episodal rules,
using wina = 3 and winc = 3.MOWCATL discovers more relationships at higher
confidence values than the Gen-REAR approach. These examples indicate that
there is a delay in time after global climatic drought indicators are recognized,
before local drought conditions occur. This is encouraging, since knowing this
time difference will allow drought risk management experts time to plan for the
expected local drought conditions.

Table 3. Performance characteristics for parallel and serial drought episodes and
rules with Gen-FCE and Gen-REAR, Clay Center, NE drought monitoring database,
window width 4 months and a min conf = 25%.

Parallel Serial
Min. Total Freq. Distinct Total Total Frequent Distinct Total
freq. cand. episodes rules time (s) cand. episodes rules time (s)
0.02 1891 93 175 4 3002 327 9 10
0.04 650 265 41 1 1035 139 1 6
0.08 297 68 10 0 494 33 0 1
0.12 154 28 1 0 310 16 0 0
0.16 108 15 1 0 226 13 0 0
0.20 75 10 0 0 160 10 0 0
0.24 51 7 0 0 112 7 0 0
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Table 4. Performance characteristics for parallel and serial drought episodes and rules
for the Clay Center, NE drought monitoring database, with varying window widths.
Parameters include lag = 2, min sup = 0.005, min fr = 0.02, and min conf = 25%.

MOWCATL Gen-FCE/Gen-REAR
Parallel Serial Parallel Serial

win or Freq. Distinct Freq. Distinct Freq. Distinct Freq. Distinct
wina winc episodes rules episodes rules episodes rules episodes rules

1 1 135 44 101 45 40 0 40 0
1 2 319 64 387 55
1 3 532 72 741 58
2 1 199 84 212 134 149 4 55 0
2 2 383 127 498 176
2 3 596 154 852 189
3 1 252 79 331 140 400 45 183 1
3 2 436 121 596 184
3 3 649 142 951 199
4 1 335 60 485 125 930 175 327 9
4 2 519 86 771 164
4 3 732 98 1125 174
4 4 1056 104 1596 198

Finding the appropriate time lag is an iterative process. Using the parameters
from Table 2, but decreasing the time lag to one month, reduces the number of
rules to 24 parallel drought rules and 62 serial drought rules at a minimal support
of 0.005. By increasing the time lag to three months, we get 275 parallel drought
rules and 506 serial drought rules. As the time lag increases, more rules are
discovered, but again with decreased significant meaning.

Clearly, the results produced by these methods need to be coupled with hu-
man interpretation of the rules and an interactive approach to allow for iterative
changes in the exploration process. Using our methods, the drought episodes
and relationships are provided quickly and without the distractions of the other
non-drought data. These are then provided to the drought risk management ex-
pert for human interpretation. We provide the user with the J-measure [2] for
ranking rules by interestingness, rather than using the confidence value alone.
Similarly, our method can be employed in other applications.

7 Conclusion

This paper presents a new approach for generating episodal association rules
in multiple data sets. We compared the new approach to the Gen-FCE and
the Gen-REAR approaches, and showed how the new approach complements
these techniques in addressing complex real-life problems like drought risk man-
agement. As demonstrated by the experiments, our methods efficiently find re-
lationships between climatic episodes and droughts by using constraints, time
lags, closures and representative episodal association rules.



Discovering Sequential Association Rules with Constraints and Time Lags 441

Other problem domains could also benefit from this approach, especially
when there are groupings of events that occur close together in time, but oc-
cur relatively infrequently over the entire dataset. Additional suitable problem
domains are when the entire set of multiple time series is not correlated, but
there are periodic occurrences when the signature of one sequence is present in
other sequences, with possible time delays between the occurrences. The anal-
ysis techniques developed in this work facilitate the evaluation of the temporal
associations between episodes of events and the incorporation of this knowledge
into decision support systems. Currently, there is no commercial product that
addresses these types of problems.

For future work, we plan to extend these methods to consider the spatial
extent of the relationships. Additionally, we are incorporating these approaches
into the advanced geospatial decision support system for drought risk manage-
ment mentioned above.
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