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Abstract. It is expected that stock prices can be affected by the local
and overseas political and economic events. We extract events from the
financial news of Chinese local newspapers which are available on the
web, the news are matched against stock prices databases and a new
method is proposed for the mining of frequent temporal patterns.

1 Introduction

In stock market, the share prices can be influenced by many factors, ranging from
news releases of companies and local politics to news of superpower economy.
We call these incidences events. We assume that each event is of a certain
event type and each event has a time of occurrence, typically given by the date
that the event occurs or it is reported. Each “event” therefore corresponds to a
time point. We expect that events like “the Hong Kong government announcing
deficit” and “Washington deciding to increase the interest rate”, may lead to
fluctuations in the Hong Kong stock prices within a short period of time. When
a number of events occur within a short period of time, we assume that they
possibly have some relationship. Such a period of time can be determined by
the application experts and it is called a window, usually limited to a few
days. Roughly speaking, a set of events that occur within a window is called an
episode instance. The set of event types in the instance is called an episode.

For example, we may have the following statement in a financial report:
“Telecommunications stocks pushed the Hang Seng Index 2% higher following
the Star TV-HK Telecom and Orange-Mannesmann deals”. This can be an ex-
ample for an episode, in which all the four events, “telecommunication stocks
rise”, “Hang Seng Index surges” and the two deals of “Star TV-HK Telecom”
and “Orange-Mannesmann”, all happened within a period of 3 days. If there
are many instances of the same episode it is called a frequent episode. We are
interested to find frequent episodes related to stock movements. The stock move-
ment need not be the last event occurring in the episode instance, because the
movement of stocks may be caused by the investors’ expectation that something
would happen on the following days. For example, we can have a news report
saying “Hong Kong shares slid yesterday in a market burdened by the fear of pos-
sible United States interest rates rises tomorrow”. Therefore we do not assume
an ordering of the events in an episode.
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From the frequent episode, we may discover the factors for the fluctuation
of stock prices. We are interested in a special type of episodes that we call
stock-episodes, it can be written as ”〈e1, e2, ... en (t days)〉”, where the e1,
e2, ... en are event types and at least one of the events should be the event of
stock fluctuation. An instance for this stock-episode is an instance where the
events of the event types e1, ... en appear in a window of t days. Since we are
only concerned with stock-episodes, we shall simply refer to stock-episodes as
episodes.

1.1 Definitions

Let E = {E1, E2, ..., Em} be a set of event types. Assume that we have a
database that records events for days 1 to n. We call this a event database,
we can represent this as DB =< D1, D2, ..., Dn >, where Di is for day i, and
Di = {ei1, ei2, ..., eik}, where eij ∈ E (j ∈ [1, k]), This means that the events
that happen on day i have event types ei1, ei2, ..., eik. Each Di is called a day-
record. The day records Di in the database are consecutive and arranged in
chronological order, where Di is one day before Di+1 for all n − 1 ≥ i ≥ 1.
P = {ep1, ep2, ..., epb}, where epi ∈ E (i ∈ [1, b]), is an episode if P has at
least two elements and at least one epj is a stock event type. We assume that
a window size is given which is x days, this is used to indicate a consecutive
sequence of x days. We are interested in events that occur within a short period
as defined by a window. If the database consists of m days and the window size
is x days, there are (m) windows in the database: The first window contains
exactly days D1, D2, ..., Dx The i-th window contains Di, Di+1, ..., with up to x
days. The second last window contains Dm−1, Dm, and the last window contains
only Dm.

In some previous work such as [6], the frequency of an episode is defined as
the number of windows which contain events in the episode. For our application,
we notice some problem with this definition: suppose we have a window size of
x, if an episode occurs in a single day i, then for windows that start from day
i−x+1 to windows starting from i, they all contain the episode, so the frequency
of the episode will be x. However, the episode actually has occurred only once.
Therefore we propose a different definition for the frequency of an episode.

Definition 1. Given a window size of x days for DB, and an episode P , an
episode instance of P is an occurrence of all the event types in P within a
window W and where the record of the first day of the window W contains at
least one of the event types in P . Each window can be counted at most once as
an episode instance for a given episode.

The frequency of an event is the number of occurrences of the event in
the database. The support or the frequency of an episode is the number of
instances for the episode. Therefore, the frequency of an episode P is the number
of windows W , such that W contains all the event types in P and the first day
of W contains at least one of the event types in P . An episode is a frequent
episode if its frequency is >= a given minimum support threshold. �
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Problem definition: Our problem is to find all the frequent episodes given
a event database and the parameters of window size and minimum support
threshold.

Let us call the number of occurrences of an event type a in DB the database
frequency of a. Let us call the number of windows that contain an event type
a the window frequency of a. The window frequency of a is typically greater
than the database frequency of a since the same occurrence of a can be contained
in multiple windows. We have the following property.

Property 1. For any episode that contains an event a, its frequency must be
equal to or less than the window frequency of a. That is, the upper limit of the
frequency of an episode containing a is the window frequency of a.

Lemma 1. For a frequent episode, a subset of that episode may not be frequent.

Proof: We prove by giving a counter example to the hypothesis that all subsets of
a frequent episode are frequent. Suppose we have a database with 7 days, and the
window size is 3, the records D1 to D7 are: {b}, {a, c}, {b}, {d}, {b}, {c, a}, {d},
respectively. If the threshold is 3, then < abc >, has 3 occurrences and is
a frequent episode, while < ac >, which is a subset of < abc >, has only 2
occurrences and is not a frequent episode. �

1.2 Related Work

The mining of frequent temporal patterns has been considered for sales records,
financial data, weather forecast, and other applications. The definitions of the
patterns vary in different applications. In general an episode is a number of events
occurring within a specific short period of time. The restriction of the ordering
of events in an episode depends on the applications. Previous related research
includes discovering sequential patterns [1], frequent “episodes” [6], temporal
patterns [4] and frequent patterns ([3,2]). In [6] an episode, defined as the ”par-
tially ordered” events appearing close together, is different from our definition
of stock-episode. Some related work focus on stock movement [5], but we would
like to relate financial events with stock movement.

When we deal with the events which last for a period of time, we may consider
the starting time and ending time of the events as well as their temporal relations,
such as overlap and during. [4] discovers more different kinds of temporal pattern.

[9] discovers frequent sequential patterns by using a tree structure. [6] finds
the frequent series and parallel episodes in a sequence of point-based events.
An episode is a partially ordered of events occurring close together. An episode
X is a subepisode of another episode Y if all events in X are also contained
in Y and the order of events in X is the same with that in Y . The frequency
of an episode is the number of windows containing the episode. Note that this
definition is different from ours, since it allows the same episode instance to be
counted multiple times when multiple windows happen to contain the instance.
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Most of the algorithms introduced in the above are based on Apriori Algo-
rithm [1]. Our definition of frequent episodes does not give rise to the subset
closure property utilized in these methods. [3] provides a fast alternative to find
the frequent pattern with a frequent pattern tree (FP-tree), which is a kind of
prefix tree. However, the FP-tree is not designed for temporal pattern mining.
There is some related work in applying the technique to mine frequent subse-
quences in given sequences [8], but the problem is quite different from ours.

2 An Event Tree for the Database

The method we propose has some similarity to that in [3]. We use a tree structure
to represent the sets of event types with paths and nodes. The process is com-
prised of two phrases: (1) Tree construction and (2) Mining frequent episodes.

The tree structure for storing the event database is called the event tree.
It has some similarity to the FP-tree. The root of the event tree is a null node.
Each node is labeled by an event type. Each node also contains a count, and a
binary bit, which indicates the node type.

Before the event tree is built, we first gather the frequencies of each event
type in the database DB. We sort the event types by descending frequencies.
Next we consider the windows in the database. For each window,

1. Find the set F of event types in the first day, and the set R of event types
in the remaining days. F and R are each sorted in descending database
frequency order.

2. Then the sorted list from F and that from R are concatenated into one list
and inserted into the event tree. One tree node corresponds to each event
type in each of F and R. If an event type is from F , the binary bit in the
tree node is 0, if the event type is from R, the binary bit in the tree node
is 1. Windows with similar event types may share the same prefix path in
the tree, with accumulated count. Hence a path may correspond to multiple
windows. If a new tree node is entered into the tree, the count is initialized
to 1. When an event type is inserted into an existing node, the count in the
node is incremented by 1.

In the event tree, each path from the root node to a leaf node is called a
window path, or simply a path, when no ambiguity can arise. The event tree
differs from an FP-tree in that each window path of the tree is divided into two
parts. There is a cut point in the path so that the nodes above the cut point has
binary bit set to 0. This is called the firstdays part of the path. The second
part of the path, with binary bits of 1, is called the remainingdays part of the
path.

There is a header table that contains the event types sorted in descending
order of their frequencies. Each entry in the header table is the header of a linked
list of all the nodes in the event tree labeled with the same event type as the
header entry. Each time a tree node x is created with a label of event type e, the
node x is added to the linked list from the header table at entry e. The linked
list therefore has a mixture of nodes with binary bits of 0 or 1.
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The advantage of the event tree structure is that windows with common
frequent event types can likely share the same prefix nodes in the event tree.
In each of the firstdays part and the remainingdays part, the more frequent the
event is, the higher level the event node is in so as to increase the chance of
reusing the existing nodes.

Before building the tree, we can do some pruning based on event type fre-
quencies. Those event types with window frequencies less than the minimum
support threshold are excluded from the tree because the event types will not
appear in the frequent episodes with the reason stated in Property 1. Once an
event type is excluded, it will be ignored whenever it appears in a window. This
helps us to reduce the size of tree and reduce the chance of including non-frequent
episodes.

Strategy 1. We remove those events with the window frequencies less than the
minimum support threshold before constructing the tree,

Strategy 2. In counting the windows for the frequency of an episode, each
window can be counted at most once. If an event type appears in the first day
and also in the remaining days of a window simultaneously, the effect on the
counting is the same as if the event type appears only in the first day. Therefore,
for such a window, only the occurrence of the event type in the first day will be
kept and that in the remaining part of the window is/are removed.

Example 1: Given an event database as shown in Figure 1(a), suppose the
window size is set to 2 days and the minimum support is set to 5, the event
database is first scanned to sum up the frequencies of each event type in the
database and also the window frequencies, which are < a : 4, b : 5, c : 3, d : 3, m :
2, x : 3, y : 2, z : 2 > and < a : 6, b : 7, c : 5, d : 6, m : 4, x : 5, y : 4, z : 3 >,
respectively. Thus the frequent event types are a, b, c, d, x since their window
frequencies are at least the minimum support. The frequent event types are
sorted in the descending order of their database frequencies and the ordered
frequent event types are < b, a, c, d, x >.

Day Events
1 a, b, c

2 y, m, b, d, x

3 a, c

4 a, b

5 z, m, y, d

6 b, x, c

7 d, a, b

8 x, z

Window No. Days included Event-set pairs
1 1,2 < (b, a, c), (d, x) >

2 2,3 < (b, d, x), (a, c) >

3 3,4 < (a, c), (b) >

4 4,5 < (b, a), (d) >

5 5,6 < (d), (b, c, x) >

6 6,7 < (b, c, x), (a, d) >

7 7,8 < (b, a, d), (x) >

8 8 < (x), () >

(a) (b)

Fig. 1. An event database and the corresponding windows
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Next a null root node is created. The event database is then scanned for the
second time to read the event types in every 2 days for inserting the windows’
event types into the tree. Keeping only the frequent event types and excluding the
duplicate event types, the first window can be represented by < (b, a, c), (d, x) >,
in which the first round brackets consists of the event types in the first day
of window while the second round brackets consists of the event types in the
remaining days of the window (the second day of the window in this example).
Both event lists are sorted in decreasing window frequency order. We call <
(b, a, c), (d, x) > the event-set pair representation for the window. A first new
path is built for the first window with all counts initialized to one. The nodes
are created in the sorted order and the types of the nodes b, c and a are set to
0 while that of nodes d and x are set to 1.

The window is shifted one day lower and one more day of event types in the
database are read to get the second window. The event types are sorted and
the second window is < (b, d, x), (a, c) >. The tree after inserting the path for
the second window is shown in Figure 2. Each tree node has a label of the form
< E : C : B > where E is an event type, C is the count, and B is the binary bit.
In this figure, the dotted lines indicates the linked list originating from items in
the header table to all nodes in the tree with the same event type.

Fig. 2. (a) The tree after inserting the first two windows. (b) A rough structure of the
final tree constructed in Example 1.

The remaining windows are inserted to the tree in the similar way. The rough
structure of the final tree constructed is shown in Figure 2(b). (Note that some
dotted lines are missing in the figure for clarity.)

3 Mining Frequent Episodes with the Event Tree

Our mining process is a recursive procedure applied to each of the linked list
kept at the header table. Let the event types at the header table be h0, h1, ...hH ,
in the top-down ordering of the table. We start from the event type hH at
the bottom of the header table and traverse up the header table. We have the
following objective in this recursive process:
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Objective A: Our aim is that when we have finished the processing of the linked
list for hi, we should have mined all the frequent episodes that contain event types
hi, hi+1, ..., hH .

Suppose we are processing the linked list for event type hi. {hi} is called a
base event set in this step. We can examine all the paths including the event
type hi from the event tree by following the linked list. Let us call the set of these
paths Pi. These paths will help us to find the frequencies of episodes containing
event type hi. We have the following objective:

Objective B: From the paths in Pi, we should find all frequent episodes that
contain hi but not any of hi+1, ..., hH .

The reason why we do not want to include hi+1, ... hH is that frequent
episodes containing any of hi+1, ..., hH have been processed in earlier iterations.
Let us call the set of all frequent episodes in DB that contain hi but not any of
hi+1, ... hH , the set Xi.

We break up the Objective B into two smaller objectives:

Objective B1: From the paths in Pi, we would like to find all frequent episodes
in Xi of the form {a} ∪ {hi}, where a is a single event type.

Objective B2: From the paths in Pi, we would like to form a database of paths
DB′ which can help us to find the set Si of all frequent episodes in Xi that
contains hi and at least two other event types. DB′ is a conditional database
which does not contain {hi} such that if we concatenate each conditional frequent
episode in DB′ with hi, the resulting episodes will be the set we want.

With DB′ we shall build a conditional event tree T ′ with its header table in
a similar way as the first event tree. Therefore, we can repeat the mining process
recursively to get all the conditional frequent episodes in T ′.

Now we consider how we can get the set of paths Pi, and from there obtain a
set of conditional paths Ci in order to achieve Objectives B1 and B2. Naturally
we examine the linked list for hi, and locate all paths that contain hi. Let us
call the event types hi+1, ...hH invalid and the other event types in the header
table valid. A node labeled with an invalid(valid) event type is invalid (valid).
Suppose we arrive at a node x in the linked list, there are two possibilities

1. If the node x (with event type hi) is at the firstdays part (the binary bit
is 0), we first visit all the ancestor nodes of x and include all the nodes in
our conditional path prefix. We perform a depth-first search to visit all
the sub-paths in the sub-tree rooted under event node x, each such path has
a potential to form a conditional path. Only valid nodes are used to form
paths in Pi. Note that the nodes in the firstdays part of the path below event
x will be invalid and hence ignored.

2. If the node x (with event type hi) is in the remainingdays part, we simply
traverse up the path and ignore the subtree under this node. This is because
all the nodes below x will be invalid. Invalid nodes may appear above x and
they are also ignored.
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For example, when we process the left most < d : 1 : 1 > node in the tree in
Figure 2(b), we traverse up the tree, include all nodes except for < x : 1 : 0 >,
since it is invalid. When we process the left most < c : 1 : 0 > node in the tree
in Figure 2(b), we traverse up to node < b : 5 : 0 >, and then we do a depth first
search. We ignore the nodes < x : 1 : 0 > below it, and include < a : 1 : 1 > but
not < d : 1 : 1 >. Note that the downward traversal can be stopped when the
current node has no child node or we have reached an invalid node.

Let us represent a path in the tree by < (e1 : c1, e2 : c2, ..., ep : cp), (e′
1 :

c′
1, ..., e

′
q : e′

q) >, where ei, e
′
j are event types, ci, c

′
j are their respective counts,

ei are event types in the firstdays part, and e′
j are from the remainingdays part.

Consider a path p that we have traversed in the above. We effectively do a few
things for p:

– Step (1): Remove invalid event types, namely, hi+1, ...hH .
– Step (2): Adjust counts of nodes above hi in the path to be equal to that

of hi

– Step (3): If hi is in the firstdays part, then move all event types in the
remainingdays part to the firstdays part

– Step (4): Remove hi from the path.

The resulting path is a conditional path for hi. After we have finished with
all nodes in the linked list for hi, we have the complete set of conditional paths
Ci for hi. For example, for Figure 2, the conditional paths for x are < (d : 1), (b :
1, c : 1) >, < (b : 1, c : 1, a : 1, d : 1), (φ) >, < (b : 1, a : 1, c : 1), (d : 1) >, < (b :
1, a : 1, d : 1), (φ) >, < (b : 1, d : 1, a : 1, c : 1), (φ) >.

The set Ci forms our conditional database DB′. It helps us to achieve both
Objectives B1 and B2. For Objective B2, we first determine those event types
in DB′ with a window frequencies which satisfies the minimum threshold
requirement. This can help us to prune some event types when constructing the
conditional event tree T ′. The window frequency of e is the sum of the counts
of nodes in Ci with a label of e.

For Objective B1, we need to find the single event types which when combined
with hi will form a frequent episode. For locating these event types we use the
first-part frequency for event types. The first-part frequency of an event type
e in the set of conditional paths Ci is the sum of the counts in the nodes with
label e in Ci that are in the firstdays part.

In the above we describe how we can form a conditional database DB′ with a
base event set α = {hi}, and a conditional event tree T ′ can be built from DB′.
In the header table for T ′, the event types are sorted in descending order of the
database frequencies in DB′. Event types in the conditional paths in DB′ are
then sorted in the same order at both the firstdays part and the remainingdays
part before they are inserted into T ′.

We apply the mining process recursively on this event tree T ′. T ′ has its
own header table and we can repeat the linked list processing with each entry in
the header table. When we build another conditional event tree T ′′ for a certain
header h′

j for T ′, the event base set is updated as h′
j∪α. This means that frequent

episodes uncovered from T ′′ are to be concatenated with h′
j ∪ α as the resulting

frequent episodes.
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Strategy 3. When a conditional event tree contains only a single path, the
frequent episodes can be generated directly by forming the set S1 of all possible
subsets of the event types in the firstdays part of path, and then the set S2 of
all possible subsets of the event types in the remainingdays part. Any element
of S1 with the event base set is a possible frequent episode. The union of any
element of S1 and any element of S2 and the event base set is also a possible
frequent episode. And the frequency of such a episode is the minimum among
the event types in episode.

By the way we construct a conditional event tree, if a path contains event
types in the remainingdays part, those event types corresponds to windows which
contains some episode e with hi in the remainingdays part. For such windows
to be counted for the episode e, there must be some event type in e that occurs
in the firstdays part. Therefore when we form episode with an element in S2 we
must combine with some element in S1.

4 Performance Evaluation

To evaluate the performance of the proposed method, we conduct experiments
on an Sun Ultra 5 10 machine running SunOS 5.8 with 512 MB Main Memory.
The programs are written in C. Both synthetic and real data sets are used.

Synthetic data: The synthetic data sets are generated from a modified
version of the synthetic data generator in [1]. The data is generated with the
consideration of overlapping windows. That is, with the window size of x days,
the program will consider what data it has generated in the previous x−1 days,
in order to choose the suitable event types for the x-th day to maintain the
target frequencies of the frequent episodes. The data generator takes six main
parameters as listed in the following table:

Parameter Description Values
|D| Number of days 1K, 2K, 3K
|T | Average number of events per day 10, 20
|I| Average size of frequent episodes 3, 5
|L| Number of frequent episodes 1000
M Number of event types 100 - 1000
W Window size 2 - 10

Four datasets with different parameter settings as shown in the following
table are produced. With D1 and D2, we vary the thresholds and window sizes.
With D2 to D4 we vary the number of days and event types.

Dataset Name Dataset |T | |I| |D| |M |
D1 T10.I3.M500.D1K 10 3 1K 500
D2 T20.I5.M1000.D3K 20 5 3K 1000
D3 T20.I5.M100.D2K 20 5 2K 200
D4 T20.I5.M500.D2K 20 5 2K 500

In our implementation, we used linked lists to keep the frequent episodes,
one list for each episode size. Each of these lists is kept in an order of decreasing
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frequencies for a ranked display to the user at the end of the mining. We measure
the run time as the total execution time of both CPU time and I/O time. The
run time in the experiment include both tree construction and mining. Each
data points in graphs are the mean time of several runs of the experiment.

The run time decreases with the support threshold as shown in Figure 3 (a).
As the support threshold increases, less frequent events are found and included
in the subsequent conditional trees and much less time are required to find the
frequent event types in the smaller conditional trees.

Fig. 3. Performance of synthetic datasets D1 and D2

Figure 3(b) shows the effect of different window sizes on the run time. The
datasets D1 and D2 are used and the experiment run under threshold fixed
to 20%. When the window size increases, the execution time increases because
more items are included in window and paths of trees. The parameters of D2
are greater than D1 and therefore the sizes of the initial tree and the conditional
trees are larger. So the run time for D1 is much larger than that for D2 when
the window size is greater than 8 days.

To study the effect of the number of days in datasets on the execution time,
the experiment on dataset D2 is conducted. The support threshold and the
window size are set to 10% and 3 days respectively. The result in Figure 4(a)
shows that the execution time increases linearly with the number of days.

The effect of the number of event types on the execution time is also inves-
tigated. The dataset D2 is used and the support threshold is set to 10% with 3
days of window size. The result is shown in Figure 4(b).

The curve falls exponentially as the number of event types increases. When
the number of items is decreased, the distribution of event types are more con-
centrated and the frequencies of the event types are higher. Therefore less events
are pruned when constructing the conditional trees and the run time is longer.

Real data: The real data set is the news event extraction from a internet
repository of a number of local newspapers, more details of which is reported
in [7]. It contains 121 event types and 757 days. For example, Cheung Kong
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Fig. 4. Synthetic dataset D2 with window size = 3 and threshold = 10%.

stock goes up is an event type. An event for an event type occurs when it is
reported in the collected news. In addition we have collected stock data from
the Datastream International Electronic Databse, we have retrieved Dow Jones
industrial average, Nasdaq Composite Index, Hang Seng Index Future, Hang
Seng Index, and prices of 12 top local companies for the same period of time.

The performance using the real dataset with different support thresholds
and window sizes are shown in Figure 5 (a) and (b). In Figure 5 (a), the window
size is set to 3 days. The execution time is rapidly decreased with the threshold
above 15%. It is because the supports of half of the most frequent events are
close together, when the threshold is below 17%, the pruning power in forming
conditional trees is weak.

Fig. 5. Real dataset with (a) window size = 3 days. (b) support threshold = 20%.

The performance on varying the window sizes are shown in Figure 5(b) with
the threshold equal to 20%. The execution time increases with the window size
steeply. The run time with a window size of 5 days is too long (> 30000 seconds)
and is not shown in graph. When the window size is large, the tree paths are
longer and include more items. As the supports of the items are close together,
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the subsequent conditional trees nearly include all event types from the original
trees and the sizes of conditional trees cannot be reduced. Thus the mining time
increases with the window size.

Table 1. Some of the results mined with threshold = 15% and window size = 3 days.

Episode Support
Nasdaq downs, PCCW downs 151
Cheung Kong ups, Nasdaq ups 129
Cheung Kong Holdings ups, China Mobile Ups 128
Nasdaq ups, SHK Properties flats, HSBC flats 178
Cheung Kong ups, SHK Properties flats, HK Electric flats 178
China Mobile downs, Nasdaq downs, HK Electric flats 178
China Mobile downs, Heng Sang Index downs, HSBC flats 135
US increases interest rate, HSBC flats, Dow Jones flats 100

Real Dataset Results Interpretation: Since the frequencies of the events
obtained from newspapers are much less than the events of stock price movement,
we have set the threshold to 15% to allow more episodes including the newspaper
events to be mined. We have selected some interesting episodes mined with
threshold set to 15% and window size set to 3 days in Table 1. We notice some
relationship between Nasdaq and PCCW, a telecom stock. We see that Nasdaq
may have little impact on SHK Properties (real estate), or HSBC (banking).
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