
Boston University Computer Science Technical Report No. 2006-027, October 15, 2006

Discovering Frequent Poly-Regions in DNA Sequences

Panagiotis Papapetrou† Gary Benson†† George Kollios†
†Department of Computer Science, ††Departments of Biology and Computer Science

Boston University
panagpap@cs.bu.edu, gbenson@bu.edu, gkollios@cs.bu.edu

Abstract

The problem of discovering arrangements of regions of
high occurrence of one or more items of a given alphabet in
a sequence, is studied, and two efficient approaches are pro-
posed to solve it. The first approach is entropy-based and
uses an existing recursive segmentation technique to split
the input sequence into a set of homogeneous segments. The
key idea of the second approach is to use a set of sliding win-
dows over the sequence. Each sliding window keeps a set
of statistics of a sequence segment that mainly includes the
number of occurrences of each item in that segment. Com-
bining these statistics efficiently yields the complete set of
regions of high occurrence of the items of the given alpha-
bet. After identifying these regions, the sequence is con-
verted to a sequence of labeled intervals (each one corre-
sponding to a region). An efficient algorithm for mining
frequent arrangements of temporal intervals on a single se-
quence is applied on the converted sequence to discover fre-
quently occurring arrangements of these regions. The pro-
posed algorithms are tested on various DNA sequences pro-
ducing results with potentially significant biological mean-
ing.

1 Introduction
In cells, DNA forms long chains made up of four chem-

ical units known as nucleotides: adenine (A), guanine (G),
cytosine (C), and thymine (T). In these DNA chains or se-
quences, a number of important, known functional regions,
at both large and small scales, contain a high occurrence of
one or more nucleotides. We will refer to these as ”poly”
regions (for example, a region that is rich in nucleotide A,
is called poly-A). Such regions include:

• Isochores. These multi-megabase regions of genomic
sequence are specically GC-rich or GC-poor. GC-rich
isochores exhibit greater gene density. Human ALU

and L1 retrotransposons appear preferentially in iso-
chores with composition that approaches their own [7,
8, 25].

• CpG islands. These regions of several hundred nu-
cleotides are rich in the dinucleotide CpG which is
generally underrepresented (relative to overall GC
content) in eukaryotic genomes. The level of methyla-
tion of the cystine (C) in these dinucleotide clusters has
been associated with gene expression in nearby genes
[12, 11, 13].

• Protein binding regions. Within these domains, tens
of nucleotides long, dinucleotide, or base-step com-
position, can contribute to DNA flexibility, allowing
the helix to change physical conformation, a common
property of protein-DNA interactions [24, 19, 14, 18].

Despite the importance of “poly” regions, their algorithmic
identification and study has received only limited attention.

There has been a variety of approaches and algorithms
that consider DNA segmentation. One family of segmen-
tation algorithms employ statistical methods based on: (1)
the Maximum Likelihood Estimation (MLE) of the seg-
ments. In particular, the MLE is computed for the seg-
ments, given a restriction on their minimum length [12].
For the same problem, a dynamic programming approach
has been introduced in [3] that computes the global maxi-
mum, whereas [2] proposed an extension where there is no
restriction on the segment size, (2) the hidden Markov chain
model. Specifically, [8, 9] proposed this idea to model the
segmentation of DNA sequences and predict the locations
of possible segments in mitochondrial and phage genomes.
The model assumes that different segments can be classi-
fied into a finite number of states, for example poly-A, or
A+ T -rich, (2) the walking Markov model, which is a con-
tinuously varying stochastic process. [10] examined the
base composition of human and E.coli genomes and ana-
lyze the phenomenon of strand symmetry, i.e. each base

1

has the same number of occurrences on each strand). They
notice the poor fit of Markov models and observe that there
is less local homogeneity than necessary for most existing
segmentation models.

Simultaneously, there have been studies on similar prob-
lems, called “change-point problems” that have been ap-
plied to DNA sequence segmentation [7, 6, 5]. The basic
form of the multiple change point problem assumes that
there exists a set of points in a sequence where the distribu-
tion of the sequences changes. Thus, each grouping of con-
secutive literals (that will form a segment) will arise from
a different distribution. The methodology they follow can
be broken down into first determining how many change-
points exist in a sequence and then finding their locations.

Another family of DNA segmentation algorithms in-
cludes those that work in a hierarchical manner (top-to-
bottom). In particular, they employ a recursive segmenta-
tion of DNA sequences, where at each stage a split point
is chosen based on a specific criterion, e.g. the Jensen-
Shannon Divergence [13, 19]. Such algorithms have been
proposed in [4, 13, 19] and their main focus was to find do-
mains in DNA that are homogeneous in base composition
or more specifically in C+G content. Moreover, in [15] it
is shown that there are many other applications of the re-
cursive segmentation algorithm to the analysis of DNA se-
quences, such as detection of isochores (large homogeneous
C+G domains), CpG islands (small homogeneous CG do-
mains), etc.

Last but not least, a sliding window approach with fixed
size window has been applied on the human genome [18,
14] to detect G+ C-rich regions and CpG islands.

To the best of our knowledge, all current approaches tar-
get specific compositions (mainly G + C-rich or CpG is-
lands). Furthermore, there have been no studies on temporal
relations that may occur between these regions. In this pa-
per, we propose two general approaches to finding any type
of “poly”-regions in DNA, and apply an efficient mining al-
gorithm to extract frequent patterns between those regions.

In this paper we make the following contributions: (1)
we formally define the problem of detecting regions of high
occurrence of a literal or set of literals in a sequence, (2)
we propose two efficient algorithms to solve the problem,
(3) we further apply an efficient arrangement mining
algorithm to extract the complete set of frequent temporal
arrangements of these regions, (4) we provide experimental
evaluation of our algorithms by testing their efficiency on
the dog genome.

2 Problem Formulation

A sequence S = {s1, s2, ... , sm} is an ordered list
of items, where each si belongs to an alphabet Σ. In the
case of DNA sequence, each si corresponds to a nucleotide

base and thus Σ = {A, C, G, T}, where A stands
for Adenine, C for Cytosine, G for Guanine and T for
Thymine.

A High region or H-region is a segment of S, where
there is a “high occurrence” of one or more items of Σ.
Let Hd,k = {I, pstart, pend} denote an H-region of k
items with density d, that starts at item spstart

and ends at
item spend

. I is a set of items that works as a label for
the H-region and is determined by the k dense items in
the H-region. Also, spstart

∈ I and spend
∈ I. An H-

region Hd,k has density d, if each of the k items occurs
in the region with a frequency of at least d/k %. d is the
minimum % in the segment of the items in I . Given a
density threshold min density, an H-region Hd,k is dense
if d ≥ min density. Consider for example the two H-
regions in Figure 1; (1) H80,1 = {{A}, 5, 14}: in this
case we have a region of “high occurrence” of nucleotide A
with density 80%, (2) H80,2 = {{A, C}, 20, 29}: in this
case we have a region of “high occurrence” of nucleotides
A and C, where each one has a density of 40%. Notice
that the density is meaningful for small values of k. In the
case of DNA, k should either be 1 or 2, i.e. if a region has
a high occurrence of all four nucleotides (or of three) then
the occurrences are rather random and have no particular
meaning. Note that the terms ‘‘poly”-region and H-region
are synonyms and are used interchangeably in this paper.

Given two H-regions Hd,k
1 = {I1, p1

start, p1
end},

Hd,k
2 = {I2, p2

start, p
2
end}, the merging of Hd,k

1 and
Hd,k

2 is a new H-region Hd,k
12 = {I12, p12

start, p
12
end}, with

p12
start = min{p1

start, p
2
start}, p12

end = max{p1
end, p

2
end},

and I12 = I1 = I2. Notice that merging is only
allowed when I1 = I2 Also, an H-region Hd,k

1 =
{I1, p1

start, p
1
end} is said to be contained in another H-

region Hd,k
2 = {I2, p2

start, p
2
end}, if p2

start ≤ p1
start,

p2
end ≥ p1

end, and I1 = I2. A dense H-region Hd1,k
1

is maximal, if there exists no H-region Hd2,k
2 such that

d2 ≥ min density and Hd1,k
1 is contained in Hd2,k

2 .

An H-region can be seen as an event interval, which
(based on [17]) is a triple (ei, t

i
start, t

i
end), where ei is

an event label, tistart is the event start time and tiend is the
end time. In our case, the start and end times correspond to
the start and end positions of eachH-region on the DNA se-
quence. A set of event intervals, ordered by their start time,
is called an event interval sequence or e-sequence. Thus, a
set of H-regions of a DNA sequence S constitutes the cor-
responding e-sequence of S. A more detailed analysis on
the above terminology and concepts is given in Section 4.1.

Our goal is to first find the complete set of maximal H-
regions given an input sequence and then apply an efficient
algorithm for mining frequent arrangements of temporal in-
tervals [17] to discover arrangements of H-regions that oc-
cur frequently in that sequence. However, in [17] the input

AACAAGAAAA AACAATCGCC

5 14 20 29

(1) (2)

Figure 1. Example of two H-regions.

to the mining algorithm is a set of e-sequences, whereas in
our case it is a single e-sequence. Thus, an approach similar
to that described in [16] for mining frequent episodes over
a sequence of instantaneous events can be employed.

Problem Statement: Given a sequence S =
{s1, s2, ..., sm}, a density constraint d, a minimum window
size min win, a maximum window size max win and a
support threshold min sup, we want: (1) to discover the
complete set HS of maximalH-regions in S, where each re-
gion Hd,k = {I, pstart, pend} has density of at least d and
size |Hd,k| = pend − pstart + 1 ∈ [min win,max win],
and then (2) given HS and a support threshold min sup,
extract the complete set F of frequent arrangements of
H-regions in HS .

3 Extracting H-regions
In this Section we present two approaches for extracting

the set of H-regions in a sequence of items that belong to
a given alphabet. The first approach is entropy-based and
uses an existing recursive segmentation technique to split
the input sequence into a set of homogeneous segments
applying measures of divergence (in our case the Jensen
Shannon Entropy) during the segmentation, whereas the
second one implements a set of sliding windows over the
sequence.

3.1 Recursive Segmentation

One approach for segmenting a sequence into H-regions
is described in this section. The idea of recursive segmen-
tation based on a measure of divergence has been used in
earlier works, [4, 13, 19], and [15] describes how it can be
applied to DNA for detection of G + C-rich regions and
CpG islands. In this section we present an approach that
applies the standard recursive segmentation algorithm used
previously targeting any type of “poly”-region. The main
difference in our approach is that the recursive segmentation
does not use the standard s0 [4] stopping criterion; instead,
the recursion stops when the size of a segment drops below
max win.

More specifically, the input sequence is recursively seg-
mented, ensuring that the homogeneity difference (in our
case the entropy) between the segments is maximized. To
define the homogeneity difference between two segments,

an appropriate measure λ is used. There is a variety of mea-
sures that can be used for the segmentation process, like the
quadratic divergence (QD) [19], the Jensen-Shannon Diver-
gence (JSD) [13], the Gini-Index, etc. In this work, we use
the Jensen-Shannon divergence.

The target of the segmentation is a set of regions, where,
in each region, the Jensen-Shannon Entropy is maximized.
To achieve that, the input sequence is recursively segmented
and each time a split point is chosen where the JSD value
between the two segments is maximized, i.e. the distrib-
utions of the items in the two segments have maximal JSD
value from each other. The recursive segmentation stops for
a segments, when it is of size from min win to max win.
The final segmentation includes a set of regions of the de-
sired size that are candidates for being H-regions. Through
a sequential scan of each segment these regions are identi-
fied by checking whether there exist a literal or set of literals
(two literals in our case) that satisfy the density constraint
in that segment.

Before proceeding to a detailed description of the al-
gorithm, let as first give some basic definitions. Let S =
{s1, s2, ... , sm} be the input sequence and P (S) = [l...r]
be a segment of S, i.e. the subsequence of S starting at
sl and ending at sr, for 1 ≤ l, r ≤ m. A segmen-
tation of S is denoted as Sg = {n1, n2, ... , nM−1},
where each ni is an index of a point in S. Trivially, Sg

defines M segments, where each segment starts at point
snj−1 and ends at point snj

, with the first segment start-
ing at point s1 and ending at point sn1 and the last segment
starting at point snM−1 and ending at point sm. Given a
segmentation P (S) of S, f(P) = {fi, i = 1, ..., t} de-
notes the set of frequencies of each item in P (S), where
fi = number of occurrences of item i in S

|S| , and t is the num-
ber of distinct items.

Let H = −∑
filog2fi, for i = 1, ..., t be the Jensen-

Shannon Entropy of a sequence S, where fi is the frequency
of item i in S. Then, the Jensen-Shannon Divergence of two
segments P = [1...n], Q = [(n + 1)...m] of S is defined
as D(n) = H − (n

mHleft + m−n
m Hright) (1), where Hleft

and Hright denote the Jensen-Shannon entropy for the left
and right subsequences respectively.

Next, the algorithm is presented in more detail. The
main characteristic of the algorithm is that it recursively
splits the input sequence until the final segmentation is
reached, where each segment is of maximal homogeneity.
Finally, the segments are scanned to extract the set of
H-regions.

3.1.1 The Algorithm in Detail

Starting with the original sequence S, the algorithm looks
for the index n ∈ [1, |S|] of S that maximizes the JSD value
of the two segments P = S[1...n] and Q = S[(n+ 1)...m].

The same process is applied recursively to each segment
until a halting condition is satisfied. In our case, the halting
condition requires that each segment should be of length
between min win and max win. Thus, given a segment
P , if the next step of the segmentation produces segment
of length less that max win, the recursion stops and P is
reported, since it is a candidate H-region; otherwise the re-
cursive segmentation is continued. In the case where the
new segment is of size less than min win, the recursion
again stops but without reporting the segment.

input : S: the input sequence.
Σ: the alphabet.
min win: the minimum window size.
max win: the maximum window size.
d: the density constraint.

output: HS : the set of H-regions extracted from
sequence S.

// Initialization Phase
S = remove noise(S) // removes Ns from S.
K = (|Σ|+1)|Σ|

2 // K: number of runs.
H = ∅; // H: the set of H-regions.
for i = 0 : i < K : i++ do

p = find split(S, JSD);
// finds split point p where JSD
// is maximized.
if |S[0, p]| > max win then

Algorithm1(S[0, p]);
// apply the algorithm on S[0, p].

end
else

M = insert segment(S[0, p]);
// segment is inserted into M .

end
if |S[p+ 1, |S|]| > max win then

Algorithm1(S[p+ 1, |S|]);
// apply the algorithm on S[p+ 1, |S|].

end
else

M = insert segment(S[0, p]);
// segment is inserted into M .

end
end
foreach s ∈M do

if s corresponds to an H-region then
insert to H(s); // s is inserted into H

end
end
Algorithm 1: The recursive segmentation approach.

To improve the efficiency of the segmentation we apply a
preprocessing step, which has been suggested in [15] for the
detection of isochores. Thus, when looking for H-regions
of two nucleotides, say nucleotide Y and Z, the original se-
quence is transformed to a new sequence that consists of

only three types of literals: those that correspond to nu-
cleotides Y and Z, and those that do not (represented by
literal X). For example, if S = ACAAAGCGA and we
are looking for H-regions of A and G, S will be converted
to S′ = AXAAAGXGA. The benefit of this replace-
ment is the following: if one region is of high occurrence of
two nucleotides and in the other region (the rest of the sub-
sequence under consideration) all nucleotides of the differ-
ent type are represented by one literal, and thus its entropy
will definitely be larger. Also notice that the above replace-
ment improves the runtime of the algorithm. This is ex-
pected, since the alphabet size has been reduced, achieving
faster entropy calculations.

The steps of the extended algorithm for the case of H-
regions of two nucleotides are given below:

1. Given an input sequence S, for each combination of
two literals in Σ, convert S to S′ as described above.

2. Given S′, calculate JSD(P,Q), with P = S[0...n]
and Q = S[n+ 1...m], for each n ∈ [2,m− 1].

3. Let n be the index of S′ where λ (in our case JSD)
is maximized. S′ is segmented, and the index n is re-
ported. If the halting condition is satisfied for a seg-
ment, the segmentation process terminates for that seg-
ment, otherwise it proceeds recursively.

4. When the above process is completed, a segmentation
Sg = {n1, n2, ... , nM−1} of M segments is gener-
ated. Each of these segments is a candidate H-region.
Next, a linear scan is performed on Sg . Each segment
is checked whether it satisfies the density constraint
and it is further expanded both ways until the density
constraint is violated. When an H-region is found it is
reported.

A brief pseudo-code for this approach is given in
Algorithm 1. The same approach is followed for H-regions
of one nucleotide.

3.1.2 Complexity

Every time the sequence is split into two subsequences. The
number of splits is O(log(m/(max win − min win))),
where N is the size of the original sequence. Since on each
recursion each segment is read once and at the final step
we just perform a linear scan, the total runtime of each
run of the algorithm is O(mlogm). Now, given that the
alphabet size is Σ, the number of times the algorithm is run
is K = (|Σ|+1)|Σ|

2 . Thus, the total runtime of the algorithm
is O(Kmlogm), and since K is a constant, this becomes
O(mlogm).

3.2 Sliding Windows

The key idea behind this approach is to use a set of slid-
ing windows over the input sequence. Each sliding window
will keep statistics of a segment that will mainly include the
number of occurrences of each alphabet item in that seg-
ment. Combining these statistics efficiently produces the
complete set of H-regions in the sequence.

More formally, our algorithm is given a sequence S, a
density factor d, a minimum window size min win and a
maximum window sizemax win. The first step is to define
a set of sliding windows W . Let W = {w1, w2, , ... , wn},
where wi corresponds to sliding window i and n = |W| =
max win − min win + 1. Each sliding window wi is a
triple {Ci, wi

start, w
i
end}, where Ci is a set of statistics for

wi, wi
start is an index to the starting position ofwi on S and

wi
end is an index to the ending position of wi on S. Ci is a

set of t counters {C1, C2, ..., Ct} one for each item in Σ.
The value of each counter is the number of occurrences of
the corresponding item in the window. Moreover, the piece
of S covered by W is stored at each time instance. Given
this setting, at any time, we can extract the top k frequent
items in each window.

The next step is to identify the set of H-regions using
W . More specifically, all the windows defined in W will be
sliding simultaneously. Conceptually, the above setting can
be seen as having M = max win − min win + 1 levels
of windows, one for each size. At any time instance, we
check the statistics stored under each window in W . If a
set of items in a window wi is found to satisfy the density
constraint, then wi is reported as an H-region. In parallel,
we keep a list L of the H-regions discovered so far. Each
record in L corresponds to an H-region label and points to
a list of all the H-regions discovered so far with this label.
Upon discovery of a new H-region we insert it into L based
on its label.

Notice that the sliding window approach makes sense
when the alphabet size is small, which holds for the
application this paper is focused on, i.e. the DNA alphabet
size is only four.

3.2.1 The Algorithm in Detail

The algorithm has three phases: the Initialization Phase,
the Sliding Phase and the Merging Phase. During the first
phase, W is initialized; this phase is completed as soon as
the firstmax win characters of the sequence are read. Then
the algorithm proceeds with the Sliding Phase, where W
slides across the sequence until it reaches the end of the
sequence. Before inserting each new H-region into L the
Merging Phase is activated, to identify any old H-region
that can be absorbed by the new one. More details on the
three Phases are given below:

1. Initialization Phase: the first min win characters are

read and window w1 is created. This is in fact the win-
dow of the smallest size in W . The counters of w1 are
updated based on what has been read so far. For each
new character sj , a window wi, for i = 2, ..., n, of
sizemin win+ i−1 is created starting at character s1
and ending at character sj . The counters of each win-
dow wi are updated based on the counters of the previ-
ous window (i.e. wi−1. Let Ci−1

j , for j = 1, ..., t
denote the counters of the (i-1)-th window. Then
Ci

j = Ci−1
j , for j = 1, ..., t. This process is repeated

until j = max win. Every time a new window is cre-
ated and all the counters are updated, the window is
checked for items that satisfy the density constraint. If
so, it constitutes an H-region and is added into L after
applying the Merging Phase. Upon completion of the
current phase, W has been fully created. Notice that in
this phase, no sliding is performed on the windows.

2. Sliding Phase: during this phase, W keeps sliding to
the right and for every new item si, the correspond-
ing counters are updated, i.e. for each wi in W ,
Csi

= Csi
+ 1. Since each window in W is moved

one position to the right, the counter of the element
that is no longer in the window has to be decreased by
one, i.e. for each wi in W , CSstart

= CSstart
− 1.

Finally, the start and end pointers of each window are
updated accordingly. After a slide is performed and all
counters are updated, each window is checked for hav-
ing any characters that satisfy the density constraint.
Starting with the window of maximum size, if item c
is found to satisfy the density constraint, then this win-
dow is reported as an H-region of c. Since we are
only looking for maximal windows, the counter of c is
not checked any more in the rest of the windows in the
current instance of W . Finally, eachH-region is added
into L after applying the Merging Phase.

3. Merging Phase: for each new window wj , before it
is inserted into L, the corresponding record of L is
scanned for a window wi such that the start points of
wi and wj coincide and wi is contained in wj . Triv-
ially, if such window exists, it will be one of the last
max win−min win+ 1 inserted in that record. Be-
fore the insertion of wj in L, wi is removed. Also,
since the windows inserted into L are ordered by their
start time, if a window is reached, with start point
smaller than that of wj , then the process stops and in-
serts wj in L.

Notice that at each step we do not need to check all the
windows. Instead we can start with the window of maximal
size and prune some of the smaller windows. More specif-
ically, the value of each counter in a large window is an
upper bound for the value of the corresponding counters in

the smaller windows in W . Let the number of items of type

c inwi beN i
c . Then c is dense inwi, if Ni

c

|wi| ≥ d. Hence, the
maximum size of the window were these items (of type c)

can fit and fulfill the density constraint is Ni
c

d . Based on this
observation, we can start with the maximum window and
then apply the bound on each counter. This indicates which
windows of the lower levels should be searched for a candi-
date H-region for each item. Consider Figure 1(2) for ex-
ample, and let d = 50%. Suppose that max win = 10, and
currently the maximum window in W is the DNA sequence
segment shown in the Figure and notice that Cc = 4. Then
the maximum window in W , where item C can be dense, is
of size Cc

d = 8. Thus, in order to look for an H-region of
nucleotide C, we should skip w9.

The above method produces a set HS of H-regions
for the input sequence S. A brief pseudo-code for this
approach is given in Algorithm 3.

3.2.2 Complexity

In this section we give the time and space complexity of
our algorithm. Based on the previous analysis, it can be
seen that at any time instance, the number of windows
under consideration is M = max win − min win + 1.
Moreover, for each window we keep |Σ| counters, one
for each literal, which yields a total of |Σ|M counters.
Also, for each set of windows W we store the piece of the
sequence that is covered by the maximum window. Thus,
the space complexity is O(|Σ|M + max win). Now, let
the input sequence be of size m = |S|. Each element
is read once and then stored in W . At each slide, in the
worst case M windows are accessed. For each window, the
value of k counters is checked and the last element of each
window is removed. Therefore, for each slide a total of Mk
counters are accessed. Also, when a window is determined
to constitute an H-region, at most M records are accessed
in the list L to check whether it overlaps with an existing
H-regions. The above analysis yields a time complexity of
O(mM).

4 Discovering Frequent Arrangements of H-
Regions in a DNA Sequence

In this Section we apply an efficient algorithm [17] for
mining frequent arrangements of H-regions on a single
input sequence of event intervals.

4.1 Background

Let E = {E1, E2, ..., Em} be an ordered set of event in-
tervals, called event interval sequence or e-sequence. As
seen previously, each Ei is a triple (ei, t

i
start, t

i
end), where

ei is an event label, tistart is the event start point and tiend is

input : S: the input sequence.
Σ: the alphabet.
min win: the minimum window size.
max win: the maximum window size.
d: the density constraint.

output: HS : the set of H-regions extracted from
sequence S.

// Initialization Phase
S = remove noise(S) // removes Ns from S.
for i = 1 : i ≤ max win−min win+ 1 : i++ do

create windows(min win,max win);
end
// creates the set W of windows of size
// [min win,max win]. All windows are placed
// with their end point at position max win of S.
// All counters have been updated so far.
H = ∅; // H: the set of H-regions.
for k = max win+ 1 : k ≤ sizeof(S) : k++ do

slide();
// slides the set of windows W
// one position to the right.
update counters();
// updates counters in each window in W .
// starting from the window of size max win:
apply pruning();
// pruning heuristic is applied
// as described in Section 3.2
foreach window w ∈ W do

if exists a counter Cw
j : Cw

j

|w| ≥ d then
insert to H(w); // w is inserted into H

end
end

end
Algorithm 2: The sliding window approach.

the end point. The events are ordered by the start point. If an
occurrence of ei is instantaneous, then tistart = tiend. An e-
sequence of size k is called a k-e-sequence. If the first event
interval in an e-sequence of size m starts at point t1start and
the last event interval in the e-sequence ends at point tmend,
then the width of the e-sequence is equal to tmend−t1start+1.

An arrangement A of n events is defined as A
= {E , R}, where E is the set of event inter-
vals that occur in A, with |E| = n, and R =
{R (E1, E2), R (E1, E3), ... , R (E1, En), R (E2, E3),
R (E2, E4), ... , R (E2, En), R (En−1, En)}. R is the
set of relations between each pair (Ei, Ej), for i = 1, ..., n
and j = i + 1, ... , n, and R (Ei, Ej) ∈ R defines the
relation between Ei and Ej . The size of an arrangement
A = {E , R} is equal to |E|. An arrangement of size k is
called a k-arrangement. Given an e-sequence s, s contains
an arrangement A = {E , R}, if all the events in A also ap-

pear in s with the same relations between them, as defined
in R.

What remains to be defined are the types of relations that
are going to be considered. Extending [17], we consider
seven types of relations between two event intervals. Using
these relations, general arrangements can be defined. How-
ever, our methods are not limited to these relations and can
be easily extended to include more types of relations, such
as the the ones described in [1, 11].

Consider two event-intervals A and B, and assume that
the user specifies a parameter ε used to define more flexible
matchings between two points. The following relations are
studied (see also Figure 2):

• Meet (A,B): In this case, B follows A, with B start-
ing at the position where A terminates, i.e. te(A) =
ts(B) ± ε. This case is denoted as A ∼ B and we say
that A meets B.

• Match (A,B): In this case, A and B are parallel, be-
ginning and ending at the same point, i.e. tstart(A) =
tstart(B) ± ε and tend(A) = tend(B) ± ε. This case
is denoted as A||B and we say that A matches B.

• Overlap (A,B): In this case, the start point of B oc-
curs after the start point of A, and A terminates before
B, i.e. tstart(A) < tstart(B), tend(A) < tend(B) and
tstart(B) < tend(A). This case is denoted as A|B and
we say that A overlaps B.

• Contain (A,B): In this case, the start point of B fol-
lows the start point of A and the termination of A
occurs after the termination of B, i.e. tstart(A) <
tstart(B) and tend(A) > tend(B). This case is de-
noted as A > B and we say that A contains B.

• Left-Contain (A,B): In this case, A andB start at the
same point and A terminates after B, i.e. tstart(A) =
tstart(B) ± ε and tend(A) > tend(B). This case is
denoted as A | > B and we say that A left-contains
B.

• Right-Contain (A,B): In this case, A and B end at
the same position and the start point of A precedes
that of B, i.e. tstart(A) < tstart(B) and tend(A) =
tend(B) ± ε. This case is denoted as A > | B and we
say that A right-contains B.

• Follow (A,B): In this case, B occurs after A termi-
nates, i.e. tend(A) ± ε < tstart(B). This case is de-
noted as A→ B and we say that B follows A.

4.2 The Algorithm in Detail

In this Section we describe an efficient algorithm for
mining frequent arrangements of intervals on a single e-
sequence S. The algorithm uses a sliding window w of size

win to scan the whole e-sequence. w is initially placed at
the beginning of the e-sequence and includes the first win
event intervals (in our case H-regions) of S. The window
keeps sliding to the right (one event interval per slide) until
it reaches the end of S, i.e. its right end includes the last
event interval of S, for the first time. Based on this formu-
lation, a total of W = |S| + win − 1 windows is defined
over the sequence. The frequency of an arrangement A is
defined as the fraction of windows in which A occurs. Thus,
given A and a window of size win, the frequency of A is:
freq(A, win) = |{w|A occurs in w}|

|W| .
The algorithm uses the arrangement enumeration tree

structure, introduced in [17], which is traversed in a DFS
manner. The discovered arrangements are stored in a list
L, along with their frequencies. In each window w, the set
of arrangements contained in w is identified, and the list
of active arrangements L is updated. If a new arrangement
is found, it is inserted into L with support value 1. If an
arrangement already exists in L, its frequency is increased
by one. The complete set of frequent arrangements is deter-
mined by scanning the whole sequence and by increasing
the support of each arrangement by one, for every window
in which it occurs. Eventually, the complete set of frequent
arrangements of H-regions in S is produced, by extracting
those arrangements in L with support that satisfies the
minimum support threshold.

4.3 Complexity

The problem of discovering frequent arrangements of
temporal intervals has exponential complexity with respect
to the number of possible event labels. The enumeration
tree and the pruning techniques used during the mining
process decrease the cost significantly. However, depend-
ing on the nature of the input data, the set of event labels
and the density of the e-sequences, the complexity can in-
crease dramatically (in the worst case).

5 Experimental Evaluation
In this section we present our experimental results on

the performance of the proposed algorithms with respect to
accuracy and runtime. All the experiments have been per-
formed on a 2.8Ghz Intel(R) Pentium(R) 4 dual-processor
machine with 2.5 gigabytes main memory, running Linux
with kernel 2.4.20. The algorithms have been implemented
in C++, compiled using g++ along with the -O3 flag, and
their runtime has been measured with the output turned off.

5.1 Datasets

Here, we give a brief description of the datasets used for
the experimental evaluation. The datasets we taken from
http : //www.ncbi.nlm.nih.gov. This directory includes
sequence records and map data generated at NCBI or used

input : S: the input e-sequence.
win: the size of the sliding window.
min sup: the support threshold.

output: F : the set of frequent arrangements in S.
// Initialization Phase:
//W denotes the sliding window.
// Ei is the event interval at position i in S.
W.start = E1;
W.end = Ewin;
while i �= |S| do

// apply the e-sequence enumeration technique
// to extract frequent arrangements in W .
C = Extract patterns(W);
Update L(C);
for i = 1 : i ≤ |L| : i++ do

if Li ≥ min sup then
F = F ∪ Li;

end
end
i++;

end
Algorithm 3: Mining frequent arrangements in a single
e-sequence.

in NCBI resources. The files in this directory provide as-
sembled sequences for the chromosomes of the reference
assembly. Runs of Ns are inserted into the sequence wher-
ever there is a gap in the contig layout, e.g. between con-
tigs, at the centromere, at the telomeres, or at large re-
gions of heterochromatin. The NCBI Map Viewer (http :
//www.ncbi.nlm.nih.gov/mapview/map search.cgi
?taxid = 9615) provides graphical views of the dog
genome data.

For our experiments, 39 chromosomes (including the X
chromosome) of the organism Canis familiaris (dog)
have been used. Before applying our algorithms, the input
DNA sequences have been pre-processed to remove the
runs of Ns. Eventually each sequence followed alphabet
Σ = {A,C,G, T}. The experimental evaluation is divided
into two phases. In the first phase, our algorithms have been
applied to the DNA sequences (chromosomes) and have
been compared in terms of runtime and accuracy. In the
second phase, we applied the mining algorithm described
in Section 3 to extract frequent arrangements of H-regions
on 3 chromosomes (1, 2 and 38).

5.2 Extracting H-regions

The two proposed algorithms were compared in terms
of runtime and accuracy. The following factors have been
considered: (1) size of the input sequence, (2) density of
the H-regions, (3) size of the minimum and maximum win-
dows.

A[tstart, tend] B[tstart, tend]

(a) Meet of A and B

A[tstart, tend]

B[tstart, tend]

(d)

A[tstart, tend] B[tstart, tend]

(g)

Contain of A and B

Follow of A and B

+/- e

A[tstart, tend]

B[tstart, tend]

(e) Left Contain of A and B

A[tstart, tend]

B[tstart, tend]

(f) Right Contain of A and B

+/- e +/- e

A[tstart, tend]

B[tstart, tend]

(c) Overlap of A and B

A[tstart, tend]

B[tstart, tend]

(b) Match of A and B

+/- e+/- e

Figure 2. Basic relations between two event-
intervals: (a) Meet, (b) Match, (c) Overlap, (d)
Contain, (e) Left-Contain, (f) Right-Contain,
(g) Follow.

Regarding runtime, the basic observation was that the
sliding window approach outperformed the recursive seg-
mentation approach both in small and large window ranges
and density values. In Figure 3, we show the performance
of each algorithm with regard to the density factor, which
has been varied from 40% to 80%, on Chromosomes 1 (ap-
proximately 127 million bases), 48 (approximately 48 mil-
lion bases) and X (approximately 412 million bases) of the
Canis Familiaris respectively. In Figures 3(a), 3(c) and
3(e) the window range is [8, 32], whereas in Figures 3(b),
3(d) and 3(f) the window range is [18, 64].

Regarding accuracy, the sliding window approach finds
the complete set of H-regions because it does exhaustive
search. The recursive segmentation approach had poorer
performance but did not drop below 85% in accuracy. This
was expected, because the recursive segmentation, might
choose split points inside some H-regions. This can hap-
pen mainly at the early segmentations when the segments
are large. Figure 5 shows some results regarding the ac-
curacy of our algorithms. It can be seen that the accuracy
of the recursive segmentation varies between 85% and 90%,
performing slightly better in small sequences (Chromosome
38) and slightly worse in larger sequences (Chromosomes
1 and X). We also tried the recursive segmentation with-
out the sequence conversion described in Section 3.1 and
in Figure 5 we can see a significant difference between the
two approaches. Each cell in the Figure shows the number
of extracted H-regions and the percentage in the last two
columns expresses the accuracy.

Also, Figure 6 gives an overview of how the number of
the extracted H-regions increases as the density constraint
decreases, showing that the smaller the window size, the
more H-regions we get.

404550556065707580
0

1000

2000

3000

4000

5000

6000

7000

8000

Density in %

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

Chromosome 1 − Win [8,32]

Sliding Window

Recursive Segmentation

404550556065707580
0

500

1000

1500

2000

2500

3000

3500

4000

Density in %

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

Chromosome 1 − Win [18,64]

Sliding Window

Recursive Segmentation

(a) (b)

404550556065707580
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Density in %

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

Chromosome 38 − Win [8,32]

Sliding Window

Recursive Segmentation

404550556065707580
0

500

1000

1500

2000

2500

3000

Density in %

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

Chromosome 38 − Win [18,64]

Sliding Window

Recursive Segmentation

(c) (d)

404550556065707580
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Density in %

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

Chromosome X − Win [8,32]

Sliding Window

Recursive Segmentation

404550556065707580
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Density in %

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

Chromosome X − Win [18,64]

Sliding Window

Recursive Segmentation

(e) (f)

Figure 3. Results on Runtime Comparison: (a)Runtime Performance of the Two Algorithms for Chromosome 1 of the Canis
Familiaris, with window range [8,32].; (b)Runtime Performance of the Two Algorithms for Chromosome 1 of the Canis Familiaris,
with window range [18,64].; (c)Runtime Performance of the Two Algorithms for Chromosome 38 of the Canis Familiaris, with
window range [8,32].;(d)Runtime Performance of the Two Algorithms for Chromosome 38 of the Canis Familiaris, with window
range [18,64].;(e)Runtime Performance of the Two Algorithms for Chromosome X of the Canis Familiaris, with window range
[8,32].;(f)Runtime Performance of the Two Algorithms for Chromosome X of the Canis Familiaris, with window range [18,64].

A

C

A,G

T

C

G

C

T

65%

56%

69%

A

41%

A

C

A, G

T

C

G

C

T

63%

72%

66%

A

56%

C

G

T

52%

Chromosome
1

Chromosome
2

Chromosome
38

G

T

C,G

T42%

A

53%

Chromosome Arrangement Arrangement
Support in

%
Support in

%

Figure 4. A sample of the Extracted Set of
Frequent Arrangements for Chromosomes 1,
2 and 38 of the Canis Familiaris.

5.3 Extracting Frequent Arrangements

Finally, an efficient mining algorithm, as described in
Section 4, has been applied on the extracted H-regions to
detect frequent arrangements between them. Specifically,
the algorithm has been applied on the extracted H-regions
of Chromosomes 1, 2 and 38 of the Canis Familiaris. The
size of the sliding window was 1000. We managed to ex-
tract an interesting number of frequent patterns. In all three
cases a great number of overlaps and contains has been de-
tected between H-regions of C and G. These regions are in
fact the G+ C-rich ones, and the CpG islands.

Another observation was that in both Chromosomes 1
and 2 there was a high frequency (≈ 65%) of overlaps be-
tween bases A and C. In Chromosome 38 we detected a
high frequency of: (1) follows of (A,G) and T (≈ 72%),
(2) overlaps of C and G, with follows of G and T , and fol-
lows of C and T (≈ 52%), (3) meets of C and T , with
follows of G and T , and follows of C and T (≈ 56%). Fig-
ure 5 gives a sample of the frequent arrangements that have
been extracted for Chromosomes 1, 2 and 38 of the Canis
Familiaris.

By and large, there are a great number of arrangements
detected for these Chromosomes, with the minimum
support threshold varying from 60% to 40%. Chromosome
38 gave the greatest number of arrangements despite the
fact it was the smallest (in length) chromosome examined.
The size of the extracted arrangements was limited between
two and three. Note that in the above experiments the size
of H-regions was in the range [18, 64]. When the algorithm

Sliding
Window

Recursive
Segmentation

(extended)

Recursive
Segmentation

(original)

53.563
Chromosome 1 (~127 million bs)

win_size: [8,32]

Chromosome 1 (~127 million bs)
win_size: [18,64]

Chromosome 38 (~48 million bs)
win_size: [8,32]

Chromosome 38 (~48 million bs)
win_size: [18,64]

Chromosome X(~412 million bs)
win_size: [8,32]

Chromosome X(~412 million bs)
win_size: [18,64]

26.332

102.482

78.221

1.873.670

696.261

48.287 (90%)

23.245 (88%)

87.433 (85%)

69.475 (89%)

1.594.091 (85%)

598.455 (86%)

35.152 (65%)

17.670 (67%)

61.781 (60%)

57.520 (73%)

1.010.221 (54%)

452.098 (65%)

Figure 5. Accuracy Performance of the Two
Algorithms for Chromosomes 1, 38 and X of
the Canis Familiaris.

404550556065707580
0

0.5

1

1.5

2

2.5

3
x 10

5

Density in %

Nu
m

be
r o

f D
en

se
 R

eg
io

ns

H−Regions of Chromosome 1

Window [8,32]

Window [18,64]

Figure 6. Number of H-regions of Chromo-
some 1 with Respect to Different Density Val-
ues.

was applied on the smallerH-regions (of size [8, 32]) it was
noticed that: (1) the number of arrangements increased, (2)
there was a significant increase in the number of relations
of type follow. The latest is expected, since the smaller the
size of event intervals, the greater the chance of a follow to
occur.

6 Conclusion

We have formally defined the problem of detecting re-
gions of high occurrence of a literal or set of literals in a
sequence and proposed two efficient algorithms to solve it.
The first algorithm applies an efficient segmentation tech-
nique that splits the original sequence to a set of segments.
The key idea of the second one is to use a set of sliding
windows over the input sequence. Each sliding window
keeps a set of statistics of a sequence segment that mainly

includes the number of occurrences of each item in that
segment. Combining these statistics efficiently yields the
complete set of regions of high occurrence of the items of
the given alphabet. After identifying these regions, the se-
quence is converted to a sequence of labeled intervals (each
one corresponding to a region). We further applied an effi-
cient arrangement mining algorithm to extract the complete
set of frequent arrangements of the extracted regions found
in an experimental evaluation of our algorithms on the dog
genome.

Some directions for future research include: (1) im-
provement of our algorithms to be able to work efficiently
for larger alphabet sizes, (2) application of our algorithms
to proteins, and (3) application of the mining algorithm on
multiple DNA and protein sequences aiming at the detection
of arrangements of H-regions that occur frequently among
these sequences.

References

[1] J.F. Allen and G. Ferguson. Actions and events in in-
terval temporal logic. Technical Report 521, The Uni-
versity of Rochester, July 1994.

[2] I. E. Auger and C. E. Lawrence. Algorithms for the
optimal identification of segment neighborhoods. Bul-
letin of Mathematical Biology, 51:39–54, 1989.

[3] T. R. Bement and M. S. Waterman. Locating max-
imum variance segments in sequential data. Mathe-
matical Geology, 9:55–61, 1977.

[4] P. Bernaola-Galvan, R. Roman-Roldan, and J. L.
Oliver. Compositional segmentation and long-range
fractal correlations in dna sequences. Physical Review
E, 53:5181–5189, 1996.

[5] J. V. Braun, R. K. Braun, and H. G. Mueller. Multi-
ple change-point fitting via quasi-likelihood, with ap-
plication to dna sequence segmentation. Biometrica,
87:301–314, 2000.

[6] J. V. Braun and H. G. Mueller. Statistical methods
for dna segmentation. Statistical Science, 13:142–162,
1998.

[7] E. Carlstein, H. G. Mueller, and D. Siegmund.
Change-point problems. Lecture Notes and Mono-
graph Series, 23(2), 1994.

[8] G. A. Churchill. Stochastic models for heterogeneous
dna sequences. Bulletin of Mathematical Biology,
51(1):79–94, 1989.

[9] G. A. Churchill. Hidden markov chains and the analy-
sis of genome structure. Computes and Chemistry,
16(2):107–115, 1992.

[10] J. W. Ficket, D. C. Torney, and D. R. Wolf. Base com-
positional structure of genomes. Genomics, 13:1056–
1064, 1992.

[11] C. Freksa. Temporal reasoning based on semi-
intervals. Artificial Intelligence, 54(1):199–227, 1992.

[12] Y-X. Fu and R. N. Curnow. Maximum likelihood
estimation of multiple change points. Biometrica,
77:563–573, 1990.

[13] I. Grosse, P. V. Galvan, P. Carpena, R. R. Roldan,
J. Oliver, and H. E. Stanley. Analysis of symbolic se-
quences using the jensen-shannon divergence. Physi-
cal Review E, 65:041905, 2002.

[14] F. Larsen, G. Gundersen, R. Lopez, and H. Prydz. Cpg
islands as gene markers in the human genome. Ge-
nomics, 13:1095–1107, 1992.

[15] W. Li, P. Bernaola-Galvan, H. Fatameh, and I. Grosse.
Applications of recursive segmentation to the analy-
sis of dna sequences. Computes and Chemistry,
26(2):491–510, 2002.

[16] H. Mannila and H. Toivonen. Discovering generalized
episodes using minimal occurences. In Proc. of ACM
SIGKDD, pages 146–151, 1996.

[17] P. Papapetrou, G. Kollios, S. Sclaroff, and D. Gunop-
ulos. Discovering frequent arrangements of temporal
intervals. In Proc. of IEEE ICDM, pages 354–361,
2005.

[18] J. C. Venter. The sequence of the human genome. Sci-
ence, 291:1304–1351, 2001.

[19] C-T. Zhang, F. Gao, and R. Zhang. Segmentation
algorithm for dna sequences. Physical Review E,
72:041917, 2005.

