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ABSTRACT
Sequential pattern mining, which finds the set of frequent
subsequences in sequence databases, is an important data-
mining task and has broad applications. IJsually,  sequence
patterns are associated with different circumstances, and
such circumstances form a multiple dimensional space.
For example, customer purchase sequences are associated
with region, time, customer group, and others. It is inter-
esting and useful to mine sequential patterns associated
with multi-dimensional information.

In this paper, we propose the theme of multi-dimensional
sequential pattern mining, which integrates the multidi-
mensional analysis and sequential data mining. We also
thoroughly explore efficient methods for multi-dimensional
sequential pattern mining. We examine feasible combi-
nations of efficient sequential pattern mining and multi-
dimensional analysis methods, as well as develop uniform
methods for high-performance mining. Extensive experi-
ments show the advantages as well as limitations of these
methods. Some recommendations on selecting proper method
with respect to data set properties are drawn.

1. INTRODUCTION
Sequential pattern mining [l],  i.e., mining frequent sub-

sequences as patterns in a sequence database, is an im-
portant data mining task with broad applications, includ-
ing the analysis of customer behaviors, Web access pat-
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terns, process analysis of scientific experiments, predic-
tion of natural disasters, disease treatments, drug testing,
DNA analysis, etc.

As an example, an ISP (Internet Service Provider) may
find  from its customer purchase database a sequential pat-
tern PI = “try a 100 hour  free internet  =cceSS package”
+ “subscribe to 15 hours/month package” -+ “ U p -

grade to  30 hours /month package” -+ “upgrade to un-

limited package” holds for 32% of customers. Such pat-
terns can be used to develop marketing and product strate-
gres.

The patterns found from sequential pattern mining, though
uncover global regularity among customers, may suffer
from a lack of focus. For example, the above sequen-
tial pattern PI may not be popular for customers over
55. Many of these older customers may use their ac-
cess package only to check email  every two or three days
and hence the 30 hours/month package is their preferred
choice. Thus, sequential pattern PZ  = “try 100 hour free

p a c k a g e  + subscribe to 30 hours/month package” may

hold for customers over 55. On the other hand, pattern
PI may hold for a much higher percentage, say 75%, of
professional customers younger than 35.

Clearly, if sequential pattern mining can be associated
with customer cateogry or other multi-dimensional infor-
mation, it will be more effective since the classified pat-
terns are often more useful. Simular situations exist in
many practical applications. This motivates our study of
multi-dirnentional sequentialpattern mining.

Recent studies highlighted multi-dimentioraalanalysisas

another frontier of data mining research. For example, fre-
quent patterns can be associated with transactions hap-
pening at different circumstances [5],  which forms a tyipcal
case of multi-dimensional association mining. However,
there is no previous study on mining sequential patterns
in multi-dimensional circumstances.

In this paper, we integrate sequential pattern mining
and multi-dimensional analysis and propose the theme of
multi-dimerasional sequentialpattern mining. Several pos-
sible efficient  methods are proposed for multi-dimensional
sequential pattern mining. This can be categorized into
two categories: (I) integration of efficient sequential pat-
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tern mining and multi-dimensional analysis methods, and
(2) embedding multi-dimensional information into sequences
and mine the whole set using a uniform sequential pattern
mining method. Our extensive experiments show the ad-
vantages as well as limitations of these methods. Some
recommendations on selecting proper methods with re-
spect to data set properties are drawn.

The remaining of the paper is organized as follows. In
section 2, we define the problem of multi-dimensional se-
quential pattern mining and revisit related work. Section
3 introduces UniSeq,  an algorilhm by embedding multi-
dimensional information into sequences. Section 4 de-
velops two algorithms, Seq-Dim and Dim-Seq, which in-
tegrate sequential pattern mining and multi-dimensional
frequent pattern mining in two different ways. An exten-
sive performance study comparing the three methods is
reported in Section 5. We discuss related issues and po-
tential extensions and conclude the paper in Section 6.

2. PROBLEM DEFINITION
Let Z = {il,iz , . . . , i,} be a set of items. An item-

set X is a subset, of items, i.e., X c I. A sequence
is an ordered list of itemsets. A sequence s is denoted
by (~1s~ . ..s~),  where sJ  is an itemset, i.e., Jj E Z for
1 5 j 5 1. sj is also called an element of the sequence,
and denoted as (z~zz  .. . z,),  where zk is an item, i.e.,
zk E Z for 1 5 k < m. For brevity, the brackets are
omitted if an element has only one item. That is, ele-
ment (x)  is written as 2. An item can occur at most
once in an element of a sequence, but can occur multiple
times in different elements of a sequence. The number
of instances of items in a sequence is called the length
of the sequence. A sequence with length 2 is called an Z-
sequence. A sequence (Y = (ala2 . . . a,) is called a sub-
sequence of another sequence p = (blbz . . . b,)  and /3  a
super sequence of cy,  denoted as cy C ,0,  if there exist
integers 1 5 jl  < j2 < . . . < j, 5 m such that 01  c bJ,,

a2  C bJar  . . . , an  C b,,.
A sequence database S is a set of tuples (sid,s),

where sid is an identification of the sequence and s a
sequence. A tuple (sid,s)  is said to contain a sequence
(Y,  if LY  is a subsequence of s, i.e., (Y E s. The support of
a sequence (Y in a sequence database S is the number of
tuples in the database containing cy,  i.e., supports(o) =
1 {(sid,a)~((sid,s)  E S) A (c~  E s)} I . It can be denoted
as support(a) if t-he  sequence database is clear from the
context. Given a positive integer min-support as the sup-
port threshold, a sequence cy is called a sequential
pattern in sequence database S if Ihe  sequence is con-
tained by at least min-support tuples in the database,
I.e., supports  2 min-support. A sequential pattern
with length 2 is called an l-pattern.

EXAMPLE 1. Let our running database be SDB given
in Table 1. The database records the attributes and pur-

chase history of customers. There are three dimensions,
customer-group (cuat-grp), city and age-group (age-grp).

Customers are identified by customer-id (cid). Let a, b,

..’  I h be items bought by customers. The customer-ids

and purchase history (the first  and last columns in the

table) form  a sequence database, where cid is used for
sequence identification. Suppose the support, threshold
min-support = 2.

cid cust-grp city age-m sequence
10 business Boston middle (WW)
20 professional Chicago young
30 business Chicago middle

,,;,,,y,

40 education New York retired &)b))

Table 1: A multi-dimensional sequence database

A sequence ((bd)cba) has 4 elements: (bd), c, b and a.

It is a 5-sequence since there are 5 instances appearing in

that sequence. Sequence (bc) is a subsequence oj((bd)cba).

Sequence (bc) is also a sequential pattern since it is con-
tained in tuple 10, 20 and 40. Thus, support((bc))  = 3.

Its support passes support threshold. Cl

A multi-dimensional sequence database is of schema
(RID, Al,.  .  .  , A,, S), where RID  is a primary key, Al,.  .  .  ,

A, are dimensions and S is in the domain of sequences.
Let * be a meta-symbol which does not belong to any do-
main of Al,...  , A , . A multi-dimensional sequence
takes the form of (al,. . . , am,  a), where a; E (A;  U {*})
for (1 5 i < m) and s is a sequence. A multi-dimensional
sequence P = (al,.  .  . , am,  3) is said to match a tuple
t = (Xl,...  ,Emr st) in the multi-dimensional sequence
database if and only if, for (1 5 i 5 m), either a; = xi or
a; = *, and s C st.  The number of tuples in the database
matching multi-dimensional sequence P is called the sup-
port of P, denoted as support(P). Given a minimum sup-
port threshold min-support, a multi-dimensional sequence
P is called a multi-dimensional sequential pattern if
and only if support(P) >  min-support.

EXAMPLE 2. Together, all the columns in Table 1 form

a multi-dimensional sequence database. A multi-dimensional

sequence P = (business, *,  *,  (b)) matches tuple (10, business,

Boston, middle, ((bd)cba)). The support oj  P in SDB is
2. Therefore, P is a multi-dimensional sequential pattern.

0

Many studies have contributed to the efficient mining
of sequential patterns or other frequent patterns in time-
related data [l, 14, 9, 16, 17, 10, 8, 2, 11, 13, 61.  S&ant
and Agrawal [14]  generalize their definition of sequential
patterns in [l] to include time constraints, sliding time
window, and user-defined taxonomy. Mannila, et al. [9]
present a problem of mining frequent episodes in a se-
quence of events, where episodes are essentially acyclic
graphs of events whose edges specify the temporal before-
and-after relationalship but without timing-interval re-
strictions. Bettini,  et al. [2] consider a generalization of
inter-transaction association rules. These are essentially
rules whose left-hand and right-hand sides are episodes
with time-interval restrictions. Lu, et al. [S]  propose inter-
transaction association rules which are implication rules
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whose two sides are lo(,ally-ordered episodes with timing-
inlerval restrictions. Garofalakis, et al. [4] propose the use
of regular expressions as a flexible constraint specification
tool that enables user-controlled focus to be incorporated
into the sequential pattern mining process.

Almost all of the proposed methods for mining sequen-
tial patterns are based on the Apriori heuristic. The
heuristic states lhe  fact, t,hat  any super-pattern of an in-
frequent pattern cannot be frequent.

Based on this  heuristic, a typical ApriorClike  method,
such as GSP [14],  adopts a multiple-pass, candidate generation-
and-test approach. The first scan finds all of the frequent
items which form the set of single item frequent sequences.
Each subsequent pass starts wilh a seed set of sequential
patterns, which is the set of sequential patterns found in

the previous pass.  This seed set is used to generate new
potential patterns, called candidate sequences. Each can-
didate sequence contains one more item than a seed se-
quential pattern, where each element in the pattern may
contain one item or multiple items. So, all the candidate
sequences in a pass will have the same length. The scan
of the database in one pass finds the support for each can-
didate sequence. All the candidates whose support in the
database is no less than min-support  form the set of the
newly found sequential patterns. This set, then becomes
the seed set for the next pass. The algorithm terminates
when no new sequential pattern is found in a pass, or when
no candidate sequence can be generated.

The Apriorblike  sequential pattern mining methods, though
reduce the search space, bear two major and inherent costs
independent, of the implementation techniques. First, they
may have to generate a very large set of candidate se-
quences. Second, they may have to scan database many
times when long patterns exist. To overcome these prob-
lems, an efficient sequential pattern mining method, Pre-
fizSpan,  is developed in [X2]. In this study, we use PrefizSpan
as the sequential pattern mining method. The idea of
PreJzSpan will be illustrated in our example in Section
3.

3. UNISEQ: EMBED MULTIDIMENSIONAL
INFORMATION INTO SEQUENCES

Conceptually, for a tuple t in a multi-dimensional se-
quence dababase,  the multi-dimensional information can
be embedded in the sequence by introducing a special el-
ement. For example, for t,uple  t = (10, business, Boston,

middle, ((bd)cbu))  in Table 1, sequence s = ((bd)dbo)  in 1
can be extended to amd =  ((business Boston middle)(bd)cbc

Then, mining multi-dimensional sequential patterns in a
multi-dimensional sequence database can be done by min-
ing the extended sequence database. The mining process
is demonstrated in the following example.

EXAMPLE 3. Let us consider mining multi-dimensional
sequentialpatterns from database SDB in Table 1.

By extending un  element at the beginning of every ae-

quence  in the database, we embed multi-dimensional infor-

mation and get a sequence database SDBMD,  as shown in

1).

Table &.  Such an extension of sequence is called an MD-
extension, where multi-dimensional information is put

as the first element of the sequence.

MD-extension of sequence
((buaineaa  Bos ton  middZe)(bd)cba)

( (educat ion At lanta  retired)(be)(ce))

Table 2: MD-extension database SDBMD  from the
multi-dimensional sequence database SDB shown
in Table 1

Sequence database SDBMD can be mined using PrefixSpan
“3 followa.

In the jirat scan oj  the datubaae,  PrefixSpan  finds all the
single-item frequent sequences. These are (business) : 2,
(Chicago) : 2, (middle) : 2, (a) : 2, (b) : 4, (c) : 3,

(e) : 2 and(f) : 2. The complete set ojaequentialpatterna

can then be partitioned into 8 subsets, each with one of

the single-item sequences as prefix. Each subset is mined

by constructing its corresponding projected database and

recuraioely  mining i t .  A  projected database conaiata

of postfix sequences, and a postfix sequence contains
all those frequent items that follow the first occurrence of
a given prefix in any sequence. In caaea where the first

postfix item is in the aame element aa  the last prefix item,

it is indicated as (-item).
For example, the (Chicago)-projected database contains

two  postf ix sequences: ((bf)(ce)f) and (middle aabf) .

First, we print out the sequentialpattern (Chicago), then

find the single-item jrequent sequences in this projected
database. They are: (b) and(f), which form the sequential

patterns “(Chicago b) : 2” and “(Chicago f) : 2” reapec-
tively. Projecting each of these &-item prefixes further, we

see that the (Chicago f)-projected database does not con-

tain enough sequences for any item within it to satisfy
min-suppor t . However,  (Chicago b)-projected d&abase

contains postfix sequences: ((-f)f) and (f) with one fre-

quent item between them, i.e., f. This yields the aequen-

tial pattern “(Chicago bf) : 2.”  Since the (Chicago bf)-
projected database does not satisfy m&-support,  the pro-

cessing of the subset prefixed by (b) stops.
The projected databases for length-l patterns as well as

the patterns mined from them are shown in Table 3.

Every sequentialpattern mined in the above proceaa  cor-

responds to a multi-dimensional sequential pattern. For

example, pattern (Chicago bf) corresponds to multidimen-

sional sequential pattern (*,  Chicago, *,  (bf)),  which rep-

resents that customers in Chicago who purchase item b

followed by f in o later transaction. Cl

Now, let us verify the multi-dimensional sequential pat-
tern mining using MD-extension database.

THEOREM 3.1 (i/rkqeq).  Let SDB be a multidimen-

sional sequence database andSDBMD  be the MD-extension

of SDB. A multi-dimensional sequence (al,. . . ,a,,, a) is
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Prefix Projected (postfix) database

(business) (middle bcda),  (middle aabf)

(Chicago) ((bf)(ce)f),  (middle aabf)

(bcba), (aabf)

(abf)

Pa),  ((-f)(ce)f), (f), ((-e)(ce))

F? , (by), ((-e)bf),  U-e))

Sequent ia l  pa t te rns
( b u s i n e s s ) ,  ( ( b u s i n e s s  m i d d l e ) ) ,  ( ( b u s i n e s s  middZe)a),

((business middZe)b),  (business a), (business b)

(Chicago), (Chicago b), (Chicago f), (Chicago bf)

ivr;iddlc),  (middle a), (middle b)

(I), PC),  (b(ce)), (be),  (bf)

, (q’ ((ce))

Table 3: Projected databases and sequential patterns obtained via UniSeq

a multi-dimensionalsequentialpattern in SDB if and only

if sequence smd = ((a1  .  .  . a,)s)  is a sequential puttern  in

SDBMD.

Proof.
SDBMD

,I{h~~;a;u~~;).  p ;ot a sequential pattern in

1 . 7 n do not all occur frequently

with s and hence (al,. . . , a,, s) cannot be a frequent multi-

dimensional sequence in SDB. If (a,,  . . . , a,, s) is a mulli-

dimensional sequence in SDB, then al, . . . , a,, occur fre-

quently with s and can be arbitrarily  ordered within the

first element of smd to give pattern ((al . ..a.)s)  which

must also be frequent. 0

Based on Theorem 3.1 and Example 3, we have the
multi-dimensional sequential pattern mining algorithm us-
ing MD-extension database as follows.

cid Extension of sequence by attaching an element
1 ((bd)cba(business  Boston middle))
2 ((bf)(ce)(fg)(professional  Chicago young))

3 ((ah)abf  (business  Chicago middle))

4 ((be)(ce)(education Atlanta ret ired))

Table 4: Extension database SDB’ from a multi-
dimensional sequence database SDB in Table 1.

have almost identical performance results. We call this
method UniSeq (uniform sequential).

ALGORITHM 1 ( UniSeq ).

Input: Multi-dimensionalsequence database SDB and sup-
port threshold min-sup.

Output: The complete set of multi-dimensional sequen-
tial patterns.

Method: Let SDBMD be the MD-extension database of

SDB.  Mine  sequent ia l  pa t terns  i n  SDBMD using

PrefixSpan, For each sequentialpattern P in SDBMw,

output the corresponding multi-dimensional sequen-

tial pattern in SDB. 0

Rationale. The correctness and completeness of the al-
gorithm follow Theorem 3.1 immediately. 0

As an alternative, instead of embedding the multidimen-
sional information into the first element of each sequence,
it can be attached as the last element. For example, by
concatenating an element at the end of every sequence
in the database, we embed multi-dimensional information
and get a sequence database SDB’,  as shown in Table 4.

Sequence database SDB’ can be mined using PrefixSpan

It is easy to see that every sequential pattern in SDB’

corresponds to a multi-dimensional sequential pattern in
SDB. For example, (bf Chicago) corresponds to (*, Chicago,

*I (bf )I.

UniSeq mines multi-dimensional sequential patterns by
embedding multi-dimensional information into each se-
quence and then applying PrefixSpan  to the extended se-
quence database. The advantage of UniSeq is that it
reduces the problem to mining one extended sequence
database, and is therefore easy to implement. Since all
dimension values are treated as sequential items, the draw-
back of this method is that it cannot take advantage of ef-
ficient mining algorithms of multi-dimensional nonsequen-
tial computation methods, such as BUC [3] or H-cubing
[7],  and thus leads to less efficient computation when the
cost of computing multi-dimensional values becomes sub-
stantial (e.g., when the number of dimensions is not very
small).

4: COMBINE ICEBERG CUBING AND SE-
QUENTIAL PATTERN MINING

Given a multi-dimensional sequence database SD B with
schema (RID, AI,.  .  . , A,, s), the information in each tu-
ple t = (rid,xl,.  . . ,xmr  st) can be partitioned into two
parts: dimensional information (XI,.  . . x,,,)  and sequence

st.  It is then natural to divide the mining  process into
two steps: first mine patterns about dimensional infor-
mation, and then find sequential patterns from projected
sub-database, or vice versa. The observations are shown
in the following example.

EXAMPLE 4. Let us re-examine the multi-dimensional

sequential patterns in database SDB (Table 1). The sup-

port threshold is set to 2.

Although multi-dimensional information can be embed- One can first find frequent multi-dimensional value com-

ded into either the first or the last elements of each se- binations, then find correponding sequential patterns. For

quence, our experiments show that the two alternatives example, since (*,  Chicago, *) is contained in tuples 20
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and 30, it ia  frequent. Such frequent multi-ddmenaaonal
vulue  combinations are culled multi-dimensional pat-
terns, or MD-patterns.

Then, 011 Ihe  sequences in tuplea containing J4D-p&tern

P = (*, Chicugo,  *) are collected. They form the multi-
dimensional pattern projected database, or MD-
projected database for P, denoted as SDBlp.  There

we  two sequencesin SDBlp:  ((bf)(ce)(fg))  and((ah)abf).

Mine sequent ia l  pa t terns  wi th in  SDBjp.  For example,

(bf) is a aequerrlialpattern  in SDBlp,  thus  (*,  Chicago,

*, (bf)) is a multi-dimensional sequential pattern.

Alternatively, one can first find sequential patterns, and

then find their corresponding MD-patterns. For example, by

mining sequence database consisting of the first  and fourth
columna  in Table 1, sequential pattern s = (bf) is iden-

tified. Then, collect all multi-dimensional information in

tuplea containing a: (professional, Chicago,  young) and

(business, Chicago, middle). They form the projected
multi-dimensional database, or projected MD-database
for s,  denoted as SDBI,.

Then,  one  can mine MD -pat terns  in  SDBI,.  For

example, (*,  Chicago, *) is an MD-pattern. Therefore, (*,

Chicago, *, (bf)) is a multi-dimensional sequential pat-

tern. 0

In general, the soundness of the methods proposed in
Example 4 cau be verified by the following theorem.

THEOREM 4.1. Given CJ  multi-dimensionalsequence P =

( a l , . . . ,~~,a),  1etPd  = (a~,... ,nm,())  andP,  = (* ,... ,*,a).\
m

1. Let SDBjp,  be the set of tuplea in SDB matching

Pd. P is a multi-dimensional sequential pattern  if

and  only if Pd and P, are multi-dimensional aequen-

tial  patterns in SDB and SDBlp,,  reapectiaely.

2. Let SDBlp,  be the set of tuplea in SDB matching

Ps.  P is a multi-dimensional sequential pattern if
and only if P, and Pd are multi-dimensional aequen-

tiul  putkrns  in SDB and SDBlp,,  respectively.

Proof. The theorem follows related definitions immedi-

ately. 0

Based on Theorem 4.1, the problem of multi-dimensional
sequential pattern mining problem can be reduced to two
sub-problems: sequential pattern mining and MD-pattern
mining. As introduced before, sequential pattern mining
can be done efficienlly  by PrefixSpan.  For MD-pattern
mining, we adopt a B UC-like algorithm, where B UC is an
efficient iceberg cube computing algorithm developed in
[3]. The general idea of our BUC-like algorithm is illus-
trated in the following example.

EXAMPLE 5. Let us  consider finding MD-patterns, i.e.,
frequent multi-dimensionalvalue combinations in the multi-

dimensional database consisting of the second, third and

fourth columns in Table 1. Let the support threshold be 2.

1 . First, sod  all tuplea in the database in alphabetical

order of values in dimension cust-grp. Since there

is only one tuple having value education, any multi-

dimensional value  combination havingeducation can-

not be an MD-pattern. So, there is no need to search
the customer group of education. The same princi-
ple applies to customer group professional. Group

bus iness  contains two tuplea .  Therefore ,  an MD-

pattern (business, *, *) is found, and the group needs

to be analyzed further.

(0) Within group business, sort luplea  in olphnbet-

ical  order o f  values in  d imension c i ty .  S ince

each city group has only one tuple, no MD-

pattern with minimum support 2 can be formed.
So, one can ignore dimension city in the anul-

yaia of customer group business.

(b) Then, within group business, sort tuplea in QI-

phabeticcd  order of values in dimension Gge-grp.

A sub-group (business, *, middle) contains two

tuplea. Thus, (buaineaa,*,middle)  is an MD-

pattern. Since there is no more dimension at
this point, the search returns.

After analyzing dimension cuat-grp,  this dimension

can be excluded from the remaining mining, since all
MD-patterns having a non- “*‘I  value in this dimen-

sion have  been found.

2. Then, one can start analyzing dimension city. Sim-
ilarly, sort tuplea in alphabetical order of values in
dimension city. Only group Chicago having 2 tuplea

passing support threshold. A pattern (*, Chicago, *)

is output and the group is analyzed recursively.

3 . At last, by analyzing dimension age-grp, one can

find MD-pattern (*,  *,  middle).

I n aummnry, the processing tree of the BUC-like algo-
rithm is shown in Figure I.  The tree is expanded further

if and only if a sub-group has enough tuplea. The correct-

ness of the algorithm is shown in this example and also

verified in [z?]. 0

Based on Theorem 4.1, two algorithms are developed
for multi-dimensional sequential pattern mining, as shown
below.

ALGORITHM 2 (Dim-Se9  AND Seq-Dim).

Input and output: name as algorithm 1.

Method:

Dim-Seq:  Firs t  f ind  MD-pat terns .  For  each MD-

pattern, form MD-projected database then mine

sequential patterns in projected databases.

Seq-Dim,: First mine aequentialpatterns. For each
sequential pattern, form projected MD-database

und  then find MD-patterns withinprojected databases.



(cust-grp, city, age-grp)

I
(cust-grp, city, *) (cust-grp, *,  age-grp) (*,  city, age-group)

v I
(CUWYP,  *,  *I (*,  city,  *IC-growl

ALL

Figure 1: BUC processing tree for SIIB

Rationale. The correctness and completeness oj  algo-
rdthm  Dim-Seq and Seq-Dim follow,  the first and second
cases in Theorem 4.1. Cl

Both algorithms Dim-Seq and Seq-Dim are correct and
complete. However, Seq-Dim should be more efficient in
general as shown below. In Dim-Seq, the mining of di-
mensions are shared in the multiple sequential database,
whereas t,he  mining of sequential patterns for different di-
mension combinations are separated. Different dimension
combinations may share many common sequences, but
the method cannot explore the shared mining of such se-
quences. In contrast, Seq-Dim mines one sequence database
to derive all the sequential patterns. The saving of Seq-Dim
from the mining of many small sequential databases as in
Dim-Seq makes the method more efficient. Such an anal-
ysis is also supported by our performance study.

5. EXPERIMENTAL RESULTS AND PER-
FORMANCE STUDY

In this section, we report our experimental results on
the performance of three algorithms: UniSeq,  Dim-Seqand
Seq-Dim. Our performance study shows that Seq-Dim is
a scalable and eficient  method. It outperforms the other
two methods in many cases.

Our experiments were run on a 800 MHz Pentium Ill PC
with 1 gigabyte main memory. All the methods are imple-
mented using Microsoft Visual C++  6.0. As mentioned in
Section 3, there are two ways to implement UniSeq.  Our
experimental results show that both methods have almost
identical performance. Thus, we only show the perfor-
mance of the one which puts all  the dimensional informa-
tion in the last elements of each sequence.

We use synthetic datasets  to test the three methods.
In the synthetic datasets, sequences are generated using
a standard procedure described in [15].  Extensive exper-
iments were performed over many datasets. The results
are consistent in trend. Limited by space, only a set of
experiments over one data set is reported here. In this
dataset,  the number of items is set to 10,000, while the
number of sequences is 10,000. The average number of
items within each element is 2.5. The average number of
elements in one sequence is 8. Dimensional information is

generated randomly so that values are distributed evenly
in every dimension.

1

UniSeq --t
- Dim-Seq +

Seq-Dim -+

::
2 3 4 5 6 7 8 9 10

Number of dimensions

Figure 2: Scalability over dimensionality.

1 0 0

9 0

8 0

3 7 0

E 6 0

s 5 0

.E 4 0
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Figure 3: Scalability over cardinality.

Figure 2 shows the scalability of the algorithms over the
number of dimensions. T lle support threshold is set to
0.25%. The cardinality of each dimension is set to 10. As
the dimensionality increases, the runtimes  of all the three
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algorithms go up. However, Sey-Dim is more scalable.
When dimensionality is low, Ihe  major cost is in min-

ing sequential patterns. The elements containing multi-
dimensional information are short and Prefi.zSpnn  can han-
dle them easily. Thus, UnPSey  outperforms the other two
methods.

When dimensionality is high, the major cost is mining
multi-dimensional inform&on.  Sey-Dim is faster because
it only mines multi-dimensional patterns that occur with
an existing sequential pattern. Dim-Sey is also faster than
UniSey.  That is because UniSey  has to deal with longer
sequences and patterns when many dimension values are
included.

Figure 3 shows the scalability of the algorithms over car-
dinality. There are 10 dimensions and the support thresh-
old is set to 0.25%. Various cardinalities are achieved
by proper mapping of dimension values. When cardi-
nality is high, the database becomes sparse. All meth-
ods have similar performance. However, when cardinal-
ity is low, the database becomes dense. Both Unn’Sey and
Dim-Seyencounter the difficulty of dealing with many pat-
terns. For example, before finding any sequential patterns,
Dim-Sey must first explore all frequent multi-dimensional
combinations, even though some of them may not lead to
any multi-dimensional sequential pattern. Sey-Dim avoids
those costs. It only explores multi-dimensional combina-
tion under the condition of some sequential patterns. That
is the reason why it outperforms the others significantly.

Figure 4 shows the scalability of the algorithms over
support threshold. Here, the dimensionality and cardinal-
ity are set, to 8 and 10, respectively. It can be seen that
all methods scale well.

Figure 5 shows the scalability of the algorithms over the
number of sequences in the database. The database size
ranges from 10,000 to 20,000, and the support thresh-
old is set to 0.25%. The dimensionality and cardinal-
ity of each dimension are both set to 10. Both Dim-Sey

and UniSey  scale linearly but Sey-Dim is better. As the
database becomes larger, there could be many frequent
multi-dimensional values which lead to no multi-dimensional
sequential patterns. Thal makes Dim-Sky  scale poorly.

In summary, the advantages and disadvantages of the
algorithms are as follows.

l Seq-Dim is efficient and scalable. It is the fastest
algorithm in most cases.

Comparing with Dim-Sey, Sey-Dim first looks at se-
quential patlerns. It explores MD-patterns only if
there is some sequential pattern found. That makes
the search more fruitful. ‘rherefore,  Sey-Dim is more
scalable than Dim-Seq. In most cases, Sey-Dim is
also more efficient than Dim-Seq.

When mining dense datasets  or datasets  with high
dimensionality, Sey-Dim has advantages over UniSey.

That is because the BUC-like method is more ca-
pable than PrefixSpan in finding multi-dimensional
patterns in high dimensional space.

l UniSeq is also an efficient and scalable method.

6 I 1 I I I I I

l \
UniSeq  *

Dim-Seq +
Seq-Dim -G-  -

0 I I I I I
0 . 2 0 . 3 0 . 4 0 . 5 0.6 0.7 0.8 0.9  1
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Figure 4: Scalability over support threshold.
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Figure 5: Scalability over number of sequences.

It is the fastest method among the three when di-
mensionality is low.

When dimensionality is low, the advantage of BUC-

like method on finding multi-dimensional patterns
is minor. On the other hand, since UniSey  is fully
based on PrefixSpan,  it does not need any overhead
on switching data structure and mining process. Thus
UniSey  wins.

The major cost of UnLSeyis  mining the elemets with
multi-dimenisonal values. When dimensionality is
high, such elements is long and thus UnP’Sey  has to
handle long sequences and patterns.

l The scalability of Dim-Seq is not good com-
paring with the other two methods.

Dim-Sey has two major burdens: (1) before touch-
ing the sequences, it has to find multi-dimensional
patterns. Many multi-dimensional patterns may not
lead to multi-dimensional sequential patterns. Find-
ing such multi-dimensional patterns is fruitless. (2)
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no optimizalion  of mining sequential patterns can
be applied to Dim-Sey. When dimensionality is high
or dataset  is dense, the cost of BUC-like  algorithm
increases dramatically.

6. CONCLUSIONS
In this paper, we have proposed and studied efficient

methods for mining mutli-dimensional sequential patterns
in large sequence databases. Multi-dimensional sequential
patterns, which associate sequential patterns with multi-
ple dimensional circumstance information, are interesting
and useful in practice since people are often interested in
detailed sequential patterns associated with different cir-
cumstances.

Taking PrefizSpon as our basic sequential pattern min-
ing algorithm, and BUC as our basic multi-dimensional
pattern mining algorithm, we have proposed and devel-
oped three algorithms, UniSey,  Dim-Sey and Sey-Dim, to
incorporate additional dimensional information into the
process of mining sequential patt,erns. I/niSey  treats all di-
mension values as sequential items, finding all patterns us-
ing sequential pattern mining algorithm PrefixSpa?  whereas
the remaining two separate the mining of sequential items
from other dimension values. The former, Dim-Sey , finds
frequent dimension value combinations and then mines se-
quential patterns from the set of sequences that satisfy
each of these combinations; whereas the latter, Sey-Dim ,
mines the sequential patterns for the whole dataset  only
once (using Pre$&pan),  and t,hen  mines the correspond-
ing frequent dimension patterns alongside each sequential
pattern (using BUC).  We investigate t,he  strengths and
limitalions of each approach and show by experiments
that UniSeyis  the most effective when the total number
of sequential items plus other dimension values is small;
Dim-Sey is useful in datasets  that are sparse with respect
to dimension value combinations, but dense with respect
to the sequential patterns present; and Sey-l%rn  is the bet-
ter alternative in datasets  that are dense with respect to
both dimension value combinations and sequential items.

Multi-dimensional mining has been attracting attention
in recent research into data mining [5].  We have been
studying how to further improve the performance at min-
ing multi-dimensional sequential patterns, how to mine
efficiently max-sequential patterns, and closed-sequential
patterns and how to incorporate user-specified constraints
at, mining such patterns. The applications of sequential
pattern mining in Weblog analysis, telcommunication,  bio-
medical research and DNA analysis are also interesting
topics for furture research.
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