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Abstract

In this paper we study a new problem in temporal
pattern mining: discovering frequent arrangements of
temporal intervals. We assume that the database consists
of sequences of events, where an event occurs during a
time-interval. The goal is to mine arrangements of event
intervals that appear frequently in the database. There
are many applications where these type of patterns can be
useful, including data network, scientific, and financial ap-
plications. Efficient methods to find frequent arrangements
of temporal intervals using both breadth first and depth first
search techniques are described. The performance of the
proposed algorithms is evaluated and compared with other
approaches on real datasets (American Sign Language
streams and network data) and large synthetic datasets.

1 Introduction
Sequential pattern mining has received particular atten-

tion in the last decade [2, 3, 5, 6, 10, 24, 9, 18, 11, 19, 23, 13,
12, 21]. Despite advances in this area, nearly all proposed
algorithms concentrate on the case where events occur at
single time instants. However, in many applications events
are not instantaneous; they instead occur over a time inter-
val. Furthermore, since different temporal events may occur
concurrently, it would be useful to extract frequent temporal
patterns of these events. In this paper the goal is to develop
methods that discover temporal arrangements of correlated
event intervals which occur frequently in a database.

There are many applications that require mining such
temporal relations. Consider an ASL (American Sign Lan-
guage) database that contains useful linguistic information
on a variety of grammatical and syntactic structures, as well
as manual and gestural fields [15]. Detecting relations be-
tween the above structures and fields could be interesting to
the linguists and may help them discover new types of rela-
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tions they were unaware of. Another application is in net-
work monitoring, where the goal is to analyze packet and
router logs. Multiple types of events occurring over cer-
tain time periods can be stored in a log, and the goal is to
detect general temporal relations of these events that with
high probability would describe regular patterns in the net-
work. This could then be used for prediction and intrusion
detection.

Existing sequential pattern mining methods are ham-
pered by the fact that they can only handle instanta-
neous events, not event intervals. Nonetheless, such algo-
rithms could be retrofitted for the purpose, via converting a
database of event intervals to a transactional database, by
considering only the start and end points of every event
interval. An existing sequential pattern mining algorithm
could be applied to the converted database, and the ex-
tracted patterns could be post-processed to produce the de-
sired set of frequent arrangements. However, an arrange-
ment of � intervals corresponds to a sequence of length ��.
Hence, this approach will produce up to ��� different se-
quential patterns. Moreover, post-processing will also be
costly, since the extracted patterns consist of event start and
end points, and for each event interval all the relations with
the other event intervals must be determined.

To the best of our knowledge, there have been no effi-
cient methods developed that consider general types of tem-
poral arrangements between event intervals. Our main con-
tributions include: (a) a formal definition for the problem
of mining frequent temporal arrangements of intervals in
an interval database, (b) two efficient algorithms for min-
ing frequent arrangements of temporally correlated events
using breadth first and depth first techniques in an enumer-
ation tree of temporal arrangements, and (c) an extensive
experimental evaluation of these techniques and a compari-
son with a standard sequential pattern mining method using
both real and synthetic datasets.

The remainder of this paper is organized as follows:
Sec. 2 provides the problem formulation along with the ap-
propriate background and an overview of the existing meth-
ods related to our work. Sec. 3 presents two tree-based ap-



proaches for mining frequent arrangements of temporally
correlated events. Sec. 4 describes experimental evaluation,
and Sec. 5 gives conclusions.

2 Background and related work
In this section we give the problem formulation along

with the appropriate background. Moreover, we provide a
review of the most related work.

2.1 Event Interval Temporal Relations

In this paper we consider five types of temporal relations
between two event intervals. Using these relations we de-
fine more general temporal arrangements. However, our
methods are not limited to these relations and can be eas-
ily extended to include more types of temporal relations, as
the the ones described in [4].

Consider two event-intervals � and �. Furthermore, as-
sume that the user specifies an � that is used to define more
flexible matchings between two time instants. The follow-
ing relations are studied (see also Fig. 1):

� Meet(���): In this case, � follows�, with� starting
at the time � terminates, i.e. ����� � ������ �. This
case is denoted as �� and we say that � ����� �.

� Match(���): In this case, � and � are parallel, be-
ginning and ending at the same time, i.e. ����� �
������ � and ����� � ������ �. This case is denoted
as ���� and we say that � �	�
��� with �.

� Overlap(���): In this case, the start time of � occurs
after the start time of �, and � terminates before �,
i.e. ����� � �����, ����� � ����� and ����� �
�����. This case is denoted as ��� and we say that �
����	�� with �.

� Contain(���): In this case, the start time of � fol-
lows the start time of � and the termination of �
occurs after the termination of �, i.e. ����� �
����� 	�� ����� � ����� and � does not match with
�. This case is denoted as � � � and we say that �

��	��� �.

� Follow(���): In this case, B occurs after A termi-
nates, i.e. ������ � � �����. This case is denoted as
�� � and we say that � ����� �.

2.2 Problem Formulation

Let � = ���� ��� ���� ��� be an ordered set of event in-
tervals, called event interval sequence or e-sequence. Each
�� is a triple ���� �

�
������ �

�
��	�, where �� is an event la-

bel, ������� is the event start time and ����	 is the end time.
The events are ordered by the start time. If an occur-
rence of �� is instantaneous, then ������� � ����	. An e-
sequence of size k is called a k-e-sequence. For example,
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Figure 1. Basic relations between two event-
intervals: (a) Meet, (b) Match, (c) Overlap, (d)
Contain, (e) Follow.
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Figure 2. An Example of an e-sequence.

let us consider the �-e-sequence shown in Fig. 2. In this
case the e-sequence can be represented as follows: � =
���� �� ��� ��� �� ���� ��� 	� �
�� ��� �� ���� ��� ��� 	���.
Finally, an e-sequence database � = ���� ��� ���� ��� is a
set of e-sequences.

In an e-sequence database there may be patterns of tem-
porally correlated events; such patterns are called arrange-
ments. The definitions given in Section 2.1 can describe
temporal relations between two event intervals but they are
insufficient for relations between more than two. Consider
for example the two cases in Fig. 3. Case �	� can be easily
expressed using the current notation as: ��� � �. This
is sufficient to determine that � overlaps with �, � fol-
lows � and � follows �. On the other hand, the expres-
sion for case ���, i.e. ��� � �, is insufficient, since it
gives no information about the relation between A and C.
Thus, we need to add one more operand in order to express
this relation concisely. In order to define an arrangement of
more than two events we need to clearly specify the tem-
poral relations between every pair of its events. This can
be done by using the “AND” operand denoted by �. There-
fore, the above example can be sufficiently expressed as fol-
lows: ��� � ��� � � � �. Based on the previous analy-
sis, we can efficiently express any kind of relation between
any number of event intervals, using the set of operands:
� � ��� ��� ���� and *.

Consequently, an arrangement 	 of � events is de-
fined as 	 = �� � ��, where � is the set of event
intervals that occur in 	, with ��� = �, and � =
�� ���� ���� � ���� ���� ��� � � ���� ���� � ���� ����
� ���� ���� ��� � � ���� ���� � ������ ����. � is the
set or temporal relations between each pair ���� �
�, for
� � �� ���� � and � � ���� ��� � �, and � ���� �
� 
 � de-
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Figure 3. (a) �� can be expressed with four
operands and (b) ��� cannot.

fines the temporal relation between �� and �
 . The size of
an arrangement	 = �� � �� is equal to ���. An arrangement
of size � is called a �-arrangement. For example, consider
arrangement �� of size � shown in Fig. 3 (a). In this case �
= ��� �� �� and � = �� ��� �� � �� � ��� �� � �
� � ��� �� � ��. The absolute support of an ar-
rangement in an e-sequence database is the number of e-
sequences in the database that contain the arrangement.
The relative support of an arrangement is the percentage
of e-sequences in the database that contain the arrange-
ment. Given an e-sequence �, � contains an arrangement
	 = �� � ��, if all the events in 	 also appear in � with
the same relations between them, as defined in �. Con-
sider again arrangement �� in Fig. 3(a) and e-sequence � in
Fig. 2. We can see that all the event intervals in �� appear
in � and further, they are similarly correlated, i.e. Overlap
(�,�), Follow (�,�), Follow (�,�). Thus, �� is contained
in or � ������ by �. Given a minimum support thresh-
old ��� � �, an arrangement is frequent in an e-sequence
database, if it occurs in at least ��� � � e-sequences in the
database.

Based on the above definitions we can now formulate the
problem of mining frequent temporal arrangements as fol-
lows: given an e-sequence database D and a support thresh-
old ��� � �, our task is to find set ! � �	��	�� ����	��,
where 	� is a frequent arrangement in �.

2.3 Related Work

Discovering all frequent sequential patterns (or episodes)
in large databases is a very challenging task since the search
space is large. Consider for instance the case of a database
with � attributes. If we are interested in finding all the
length � frequent sequences, there are O(��) potentially
frequent ones. Increasing the number of objects might defi-
nitely lead to a paramount computational cost. The Aprior-
iAll algorithm suggested in [3] employs a bottom-up search
enumerating every single frequent sequence. This implies
that in order to produce a frequent sequence of length l, all
�� subsequences have to be generated, according to the apri-
ori principle stated in [2]. It can be easily deduced that this
exponential complexity is limiting all the apriori-based al-
gorithms to discover only short patterns. According to [6],
the candidate production can be done faster and more ef-
ficiently using a set-enumeration tree. Based on this, re-
cent algorithms [9, 24, 13, 5, 20] have introduced more effi-
cient techniques and data-structures in order to improve the

pattern mining performance. Some of these algorithms re-
sulted in two or more orders of magnitude in performance
improvements over Apriori on some data-sets.

If small differences in the problem definition are ig-
nored, the vast majority of the former algorithms extract
frequent sequential patterns based on a support threshold.
This threshold limits the results to the most common or
“famous” ones among all the sequences in the database,
causing a lack of user-controlled focus in the pattern min-
ing process that results in an overwhelming volume of po-
tentially useless patterns. A solution to this problem sug-
gested in [10], was to introduce user-specified constraints,
modeled by regular expressions. Sequential pattern min-
ing algorithms developed so far, despite their outstanding
performance in databases of short sequences, yield dramati-
cally poor performance when the support threshold is low or
when the databases consist of very long sequences. A sim-
ilar problem occurs when mining frequent itemsets [12, 2].
In order to overcome this problem, a very interesting solu-
tion has been proposed in [16], where the mining process fo-
cuses only on closed itemsets. An itemset I is closed if there
is no superset of I in the database with the same support.
Consequently, there have been some efficient algorithms de-
veloped for mining frequent closed itemsets [17, 22, 25, 7]
and closed sequences [23, 21]. Moreover, [8, 1] consider
the discovery of association rules in temporal databases and
thus the extraction of temporal features of associated items.
Also, [14] introduces the notion of episodes, i.e. combina-
tion of events with a partially specified order, where each
episode may have some minimal duration.

3 Proposed Algorithms

A straightforward approach to mine frequent patterns
from a database of e-sequences � is to reduce the problem
to a sequential pattern mining problem by converting � to
a transactional database ��. Without any loss of informa-
tion, we can keep only the start and end time of each event
interval. For example, for every event interval ���� ��� ���
in �, that describes an event �� starting at �� and ending at
��, we only keep �� and �� in ��. Now, we can apply an
efficient existing sequential pattern mining algorithm, e.g.,
SPAM [5], to generate the set of frequent sequences !�
in ��. Every pattern in !� should be post-processed to
be converted to an arrangement. However, this approach
has two basic drawbacks, regarding cost and efficiency: (1)
post-processing can be very costly, since in the worst case
the number of frequent patterns in !� will be exponential
("���� ��), where # is the number of distinct items in the
database, and the cost of converting every pattern � in!� to
an arrangement is "��� ���, (2) the patterns in !� will carry
lots of redundant information. Next, we propose two effi-
cient algorithms for mining frequent arrangements of tem-
poral intervals that address the previous problems. Both al-
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Figure 4. An e-sequence database �.
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Figure 5. An arrangement enumeration tree.

gorithms employ a tree-based enumeration structure like the
one introduced in [6]. The first algorithm uses breadth first
search to generate the candidate arrangements, whereas the
second uses depth first search.

3.1 The Arrangement Enumeration Tree

The tree-based structure used by our algorithms is called
arrangement enumeration tree. An arrangement enumera-
tion tree is shown in Fig. 5. Each level � consists of a set
of nodes, denoted as #���, that hold the complete set of
�-arrangements. Let ��� denote node � on level �, where �
indicates the position of ��� in the �-th level based on the
type of traversal used by the algorithm. For every node
��� 
 #���, we consider the arrangement 	=�� � �� de-
fined by the node, based on which, an intermediate set of
nodes (as shown in Fig. 5) is created, denoted as $%����� �,
linking to ��� . Each node in $%����� � represents a temporal
relation in �. In the case shown in Fig. 5, � � ��� �� ��
and on level �, #��� � ����� ���� ����, i.e. we
have one node for every item in � . Then, perform-
ing temporal joins on the nodes of level �, the set of
the �-arrangements of Level � is generated, with #��� =
���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ���, and for each node ��� set
$%����� � is defined. In general, on level �: (1) #��� is
created by joining the nodes in #��-�� with those in #���,
(2) for every node ��� , $%����� � is defined and then linked
to ��� . The arrangement enumeration tree is created as de-
scribed above, using the set of operands defined in Section
2 and it is traversed using either breadth-first or depth-first
search.
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Figure 6. ISId-Lists for items A and B.

3.2 BFS-based Approach

In this section we propose an event interval mining algo-
rithm that uses the arrangement enumeration tree described
above. First, we introduce the ISIdList structure, that attains
a compact representation of the intervals and a relatively
low join cost. More specifically, an ISIdList is defined for
every arrangement generated by this process. The head of
the list is the representation of the arrangements using �
and the event labels comprised in it; each record is of type
(��, ����-&���), where �� is the e-sequence id in � that sup-
ports the arrangement, and ����-&��� is a double-linked list
of all the time intervals during which the arrangement oc-
curs in the corresponding e-sequence in �.

Consider, for example, an e-sequence database � with
three unique items �, � and �, as in Fig. 4. The ISIdLists
of � and � is shown in Fig. 6. Let !� denote the complete
set of frequent �-arrangements and �� the set of candidate
frequent �-arrangements. Our algorithm will first scan � to
find !�, i.e. the complete set of �-arrangements. To achieve
this, a scan will be performed on � for every event type ��.
If the number of e-sequences in � that contain an interval
of �� satisfies the support threshold, �� will be added to !�,
and its ISIdList will be updated accordingly.

In order to generate the candidate �-arrangements, we
use the arrangement enumeration tree described above to
get the nodes of level �, along with the set of their corre-
sponding intermediate nodes. Then, removing those that do
not satisfy the support threshold constraint we get set !� of
frequent �-arrangements.

Moving to the next levels, i.e. generating the set of fre-
quent �-arrangements, we traverse the nodes on level �-�.
Note that these nodes correspond to the set of frequent (�-
�)-arrangements. For every node ����

� , a new node ��� is
created on level �, along with the set of intermediate nodes
$%����� �, one for every type of correlation of the items
in ��� . For every node in $%����� � an ISIdList is created
that contains: (1) the set of items of ��� , (2) the types of
�-relations between them, (3) for every type of �-relation a
pointer to the intermediate nodes on Level � that correspond
to that �-relation. Also, note that if an arrangement is found
to be infrequent, then the node in the tree that corresponds
to that arrangement is no further expanded.

The above process is more clear through the following
example: consider database � in Fig. 4 and assume that
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Figure 7. The set of frequent � and �-
arrangements.

��� � � � �. Scanning � and filtering with ��� � �,
we get !� = ����� ���� ����. Based on !� and the enu-
meration tree, set !� of the frequent �-arrangements is gen-
erated. In our case, we get all the possible pairs of the �-
arrangements in !�, i.e. N(2), and for every pair of events
in the arrangements, � is scanned to get all the types of
relations between them, i.e. $%�. If these relations sat-
isfy the support threshold they are added to !�. Then we
produce !� based on !�. The algorithm first creates #���,
following a breadth-first search traversal, along with the set
of intermediate nodes. Every node in $%� that satisfies
��� � � is added to !�, which in our case consists of only
one arrangement: � � � � � � � � � � �. !�, !� and
!� are shown in Fig. 7. The main steps of this approach are
described in Algorithm 1, considering an input database �
and a minimum support threshold ��� � �.

3.3 DFS-based Approach

In a breadth-first search approach the arrangement enu-
meration tree is explored in a top-bottom manner, i.e. all
the children of a node are processed before moving to the
next level. On the other hand, when using a depth-first
search approach, we must completely explore all the sub-
arrangements on a path before moving to another one. A
DFS-based approach for mining frequent sequences has
been proposed in [20]. Based on this, the previous algo-

rithm can be easily modified to use a depth-first search can-
didate generation method. This can be done by adjusting
function '����	�� 
	����	����� so that it follows a depth-
first search traversal. Consider the previous example: our
algorithm will first generate node ��

�
= ��� followed by

$%���
�
�, then ��

�
= ��� �� followed by $%���

�
�, and so

on.
The advantage of DFS over BFS is that DFS can lead

us very quickly to large frequent arrangements and there-
fore we can avoid some expansions in the other paths in the
tree. For example, say that a �-arrangement 	 is found to
be frequent. Then, the set of all sub-arrangements of 	 will
also be frequent according to the Apriori principle. Thus,
we can skip those expansions in the enumeration tree re-
ducing the cost of computation. To do so, one more step
is added to Algorithm 1: when a node is found to contain
a frequent arrangement, each sub-arrangement is added to
! and the corresponding expansions are made on the tree.
However, in BFS there is more information available for
pruning. For example, knowing the set of �-arrangements
before constructing the set of �-arrangements can prevent
us from making expansions that will lead to infrequent ar-
rangements. This information, however, is not available in
DFS.

3.4 Hybrid DFS-based Approach

In this section we consider a hybrid event interval min-
ing approach based on the following observation: since the
ISIdLists contain pointers to the nodes on the second Level
of the tree, a DFS-based approach would be inappropriate
since for every node ��� we would have to scan the database
multiple times to detect the set of �-relations among the
items in that node. In the BFS-based approach these nodes
will already be available, since they have been generated in
the second step of the algorithm. Thus, we use a hybrid
DFS approach that generates the first two levels of the tree
using BFS and then follows DFS for the rest of the tree.
This would compensate for the multiple database scans dis-
cussed above, since the set of frequent �-arrangements will
already be available thereby eliminating the need for multi-
ple database scans.

4 Experimental Evaluation

In this section we present experimental results on the per-
formance of our two algorithms in comparison with SPAM
[5]. All the experiments have been performed on a 2.8Ghz
Intel(R) Pentium(R) 	 dual-processor machine with 2.5 gi-
gabytes main memory, running Linux with kernel ��	��
.
The algorithms have been implemented in C++, compiled
using g++ along with the -O3 flag, and their runtime has
been measured with the output turned off. Note that for

The code was obtained from: http://himalaya-tools.
sourceforge.net/Spam/.



input : �: a database of e-sequences.
��� � �: minimum support threshold.

output : The set ! of the frequent arrangements in �.

! � ��
foreach event type �� do

if �� exists in � then
�� = �� � ��;

end
end
!� � ��� 
 �� � ���
 ����  ��� � ���
while !��� �� � do

#��� � '����	�� 
	����	��� �#�� � ��� #�����
(( the next set of nodes on the tree is determined.
(( It is based on a BFS traversal and it uses the
(( nodes on level (k-�) and on level �.
foreach node ��� 
 #��� do

$%����� � � '����	�� ���	�������
(( this function generates the nodes in $%�,
(( along with their ISIdLists.
�� � $%��
foreach candidate 
 
 �� do

if 
�� ���� � ��� � � then
���������
�� (( removes 
 from ��.
�� �� � ������
�� (( prunes subtree(
).

end
end
!� � ���

end
! � ! � !�;

end

Algorithm 1: A BFS-based algorithm for discovering fre-
quent temporal arrangements in a database of e-sequences.

SPAM, the post-processing time of converting the sequen-
tial patterns to arrangements has not been counted. Also,
as mentioned in Sec. 3, SPAM is tuned as follows: for
every event interval we keep only the start and end time;
as for the postprocessing phase the frequent arrangements
are extracted from the sequential patterns as described in
Sec. 3. The patterns found by SPAM comprise a set of start
and end points of event intervals, which are converted to ar-
rangements after the postprocessing phase. SPAM finds all
patterns found by our two algorithms. However, it produces
a great number of redundant patterns. For our experimental
evaluation we have used both real and synthetic datasets.

4.1 Experiments on Real Data

We have performed a series of experiments on two real
datasets. One was an American Sign Language (ASL)
database �����  ((����� ��� (	�����(� and the other
was a sample network dataset of ODFlows taken from Abi-
lene, which is an Internet2 backbone network, connecting

over 200 US universities and peering with research net-
works in Europe and Asia. It consists of 11 Points of Pres-
ence (PoPs), spanning the continental US. Three weeks of
sampled IP-level traffic flow data was collected from every
PoP in Abilene for the period December 8, 2003 to Decem-
ber 28, 2003.

4.1.1 Experiments on the ASL SignStream Database

The first series of experiments have been performed on
the American Sign Language database created by the Na-
tional Center for Sign Language and Gesture Resources at
Boston University. The SignStream database consists of
a collection of ��	 utterances, where each utterance asso-
ciates a segment of video with a detailed transcription. Ev-
ery utterance contains a number of ASL gestural and gram-
matical fields (e.g. eye-brow raise, head tilt forward, wh-
question), each one occurring over a time interval. We
first tested our algorithms on a small part of the database
that only comprised all the utterances that contained a “wh-
question”. Our goal was to detect all frequent arrangements
that occurred during a “wh-question”. In this dataset, called
�	�	��� �, the number of e-sequences was �� with an aver-
age number of items per sequence equal to ��. As shown in
Fig. 8(a), Hybrid DFS outperformed both BFS and SPAM
for supports less than �
�. Then we tested our algorithms
on the whole Signstream database that contained ��	 utter-
ances with an average sequence of �
� items per sequence.
The algorithms have been tested for various supports and
have been compared in terms of runtime. The experimental
results in Figure 8(b) show that the Hybrid DFS-based ap-
proach outperforms the BFS-based especially in small sup-
ports. In both cases SPAM starts with a runtime between
that of BFS and Hybrid DFS and for small supports the run-
time increases dramatically.

4.1.2 Experiments on Network Data

Our algorithms have also been tested on a network dataset
of ��
 sequences with an average sequence size of �


items per sequence. The data has been obtained from a col-
lection of ODFlows. We have selected two routers that were
shown to have a high communication rate with each other,
and have monitored the IP connections from one (LOSA:
router in LA) to the other (ATLA: router in Altanta) for
three days. A sequence in our dataset is the set of IP con-
nections from LOSA to ATLA for every �� minutes. Due to
the huge number of IP addresses, we have selected �

 IPs
that appear most frequently in these three days.

Our experimental results are shown in Figure 8(c), where
again Hybrid DFS outperforms both BFS and SPAM in low
supports.

4.2 Experiments on Synthetic Data

Due to the relatively small size of the current SignStream
database, we have generated numerous synthetic datasets to
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Figure 8. Results on Real Datasets: (a) ASL Dataset �: ���: ��, ���: ��, ���: ���.; (b) ASL Dataset �: ���: ���, ���: ���, ���:
���.; (c) Network Dataset: ���: �	�, ���: ���, ���: ��� (where ��� denotes the size of the dataset, ��� the average sequence size),
and ��� the number of distinct items in the dataset.

test the efficiency of our algorithms.

4.2.1 Synthetic Data Generation

The following factors have been considered for the gener-
ation of the synthetic datasets: (1) number of e-sequences,
(2) average e-sequence size, (3) number of distinct items,
(4) density of frequent patterns. Using different variations
of the above factors we have generated several datasets. In
particular, our datasets were of sizes �

, �

, �


, �


,
�


 and �



, with average sequence sizes of �, �
, �
,
�

 and ��
 items per e-sequence. Moreover, we have tried
various numbers of distinct items, i.e. 	

, �

 and �


.
Also, we have considered different densities of frequent pat-
terns. We first created a certain number of frequent patterns
that with medium support thresholds of �
� (sparse), 	
�
(medium density) and �
� (dense) would generate a lot of
frequent patterns and then added random event intervals on
the generated sequences.

4.2.2 Experimental Results

The experimental results have shown that Hybrid DFS
clearly outperforms BFS, and especially in low support
values and large database sizes Hybrid DFS is twice as
fast as BFS. Regarding the performance of SPAM, we
have concluded that in medium support values and small
database sizes SPAM performs better than BFS but worse
than Hybrid DFS, whereas in small support values and large
datasets BFS outperforms SPAM. We compared the three
algorithms on several small, medium and large datasets for
various support values. The results of these tests are shown
in Fig. 9. Due to space limitations we present only a por-
tion of our results focusing on the most significant ones.
As expected, SPAM performs poorly in large sequences and
small supports. This behavior is expected since for every ar-
rangement produced by BFS and Hybrid DFS, SPAM gen-
erates all the possible subsets of the start and end points of
the events in that arrangement. As the database size grows
along with the average e-sequence size, SPAM will be pro-

ducing a great number of redundant frequent patterns that
yield to a rapid increase of its runtime.

5 Conclusion
We have formally defined the problem of mining fre-

quent temporal arrangements of event interval sequences
and presented two efficient methods to solve it. The key
novelty of our methods is that they do not make the as-
sumption that events occur instantaneously. The BFS-based
approach uses an arrangement enumeration tree to discover
the set of frequent arrangements. The DFS-based method
further improves performance over BFS by reaching longer
arrangements faster and hence eliminating the need for ex-
amining smaller subsets of these arrangements. Our exper-
imental evaluation demonstrates the applicability and use-
fulness of our methods. An interesting direction for fu-
ture work is to incorporate additional constraints and partial
knowledge about the frequency of some arrangements.
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