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Abstract

Temporal association rule mining promises the ability to discover time-dependent correlations or patterns between
events in large volumes of data. To date, most temporal data mining research has focused on events existing at a point
in time rather than over a temporal interval. In comparison to static rules, mining with respect to time points provides
semantically richer rules. However, accommodating temporal intervals offers rules that are richer still. In this paper we
outline a new algorithm, ARMADA, to discover frequent temporal patterns and to generate richer interval-based temporal
association rules. In addition, we introduce a maximum gap time constraint that can be used to get rid of insignificant
patterns and rules so that the number of generated patterns and rules can be reduced. Synthetic datasets are utilized to
assess the performance of the algorithm.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Temporal data mining can be defined as the search for interesting correlations or patterns in large sets of
temporal data. Temporal data mining has the capability to discover patterns or rules which might be over-
looked when the temporal component is ignored or treated as a simple numeric attribute [1]. A large volume
of research has therefore been focused on temporal data mining to discover temporal rules such as sequential
patterns [2], episodes [3], temporal association rules [4,5] and inter-transaction association rules [6]. However,
almost all of these studies have been focused on data that are stamped with, and interpreted as, time points,
whereas intervals, and their relationships, have been largely overlooked.

Böhlen et al. [7] argue that for some applications events are better treated as intervals rather than time
points. For example, consider a medical database, in which a patient’s treatment is regarded each time as
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an event time-stamped with a time point, indicating the time of the treatment. While useful, it could be advan-
tageous to interpret as an interval, the period between the first and last occurrences of the treatment.

In this paper, we consider the problem of finding temporal rules from interval-based data. We can con-
sider that we have a collection of entities, for example in-patients in a hospital database, the activities of
which are recorded as a sequence of states, where each state is associated with an interval, indicating the
period of its occurrence. As stated elsewhere [1] there is a risk of losing valuable knowledge if the temporal
constraints are not flexible enough. For example, while there may be a low-level association between two
symptoms, one may often immediately precede the other enabling the former to act as an alert for the lat-
ter. The richer the temporal relationships used, the more likely the association will meet the specified con-
fidence thresholds.

Mining temporal rules from such data is undoubtedly more complex and requires a different approach from
mining patterns from point-based data, such as mining sequential patterns or episodes. An interval has dura-
tion and therefore the generated patterns have different semantics than simply before and after. Allen’s tem-
poral interval logic (and its extensions) [8–10] are commonly used to describe the relationships among
intervals.

In this paper, therefore, we propose a new algorithm, ARMADA, for discovering temporal patterns from
interval-based data. First, we extend the MEMISP (MEMory Indexing for Sequential Pattern mining) algo-
rithm [11] to mine frequent temporal patterns. We choose to extend the MEMISP algorithm because it is more
efficient than both GSP1 [12] and PrefixSpan2 [13] algorithms in finding sequential patterns from transactional
databases [11]. Similar to the MEMISP algorithm, our algorithm requires one database scan and does not
require candidate generation or database projection. When the database is too large to fit into memory, the
algorithm divides the database into several partitions and mines each partition. A second pass of the database
is then required to validate the true patterns in the database. Following this, we generate temporal rules, which
we term richer temporal association rules, from the frequent patterns.

Additionally, we include a maximum gap time constraint that can be used to remove insignificant patterns,
which in turn can reduce the number of frequent patterns and temporal association rules generated by the
algorithm. The paper discusses the result of our experiments using synthetic datasets.

The remainder of the paper is organised as follows. Section 2 discusses previous research related to our
work. Section 3 describes our temporal association rule mining problem. The proposed algorithm, ARMADA,
for mining richer temporal association rules from interval-based data is explained in Section 4. Section 5 dis-
cusses the maximum gap time constraint. Section 6 discusses the results of our experiments. Our conclusions
and areas for further research are presented in Section 7.

2. Related work

There is some previous work on the discovery of temporal patterns from interval-based data. Villafane et al.
[14] propose a technique to discover containment relationships from interval time series. While existing tech-
niques consider time series as point-based events, this paper treats time series as interval-based events. One of
the applications of containment relationships is the medical field where containment relationships among dis-
eases can be discovered. For example, we may discover that during a flu infection, a certain strain of skin-
borne bacteria is present. The containment rules discussed, however, are constrained to the Allen relations
contain or during.

Kam and Fu [15] consider the discovery of temporal patterns for interval-based events stored in a temporal
database. They use Allen’s interval operators to formulate patterns. The rules are restricted to so called A1
patterns, that only allow concatenation of operators on the right hand side. The patterns are mined with
the Apriori-like algorithm [16]. The algorithm transforms the original database into vertical data format, as
used in SPADE algorithm [17].
1 An Apriori based algorithm.
2 An FP-Growth based algorithm.
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The problem of discovering temporal patterns and rules from a state sequence is presented in [18]. Suppose
s is a state, b is the start-time of the state, and f is the end-time of a state, a state sequence is defined a series of
triples defining state intervals (b1, s1, f1), (b2, s2, f2), (b3, s3, f3), . . . , (bn, sn, fn), where bi 6 bi+1 and bi < fi. A tempo-
ral pattern is defined as a set of states together with their interval relationships. These relationships are rep-
resented as a square matrix R whose elements R[i, j] denote the relationship between state intervals i and j. To
discover the patterns, the algorithm is based on the Apriori algorithm [16] and is designed to work with a sin-
gle sequence of states. After all frequent temporal patterns are found, the temporal rule X # Y is generated
from every pair (X,Y) of frequent temporal patterns where X is a subpattern of Y.

Our work is closely related to the work discussed in [15,18]. Our data model is similar to the one described
in [15], while our definition of temporal patterns follows the one presented in [18]. However, ARMADA uses
memory-based indexing, instead of Apriori-based algorithm.

3. Problem statement

Definition 1. Given a temporal database D = {t1 . . . tn}, each record ti consists of a client-id, a temporal

attribute, a start-time, and an end-time, where start-time < end-time. We assume that the interval between the
start-time and end-time, indicating the interval during which the record values are valid, is a relatively short
interval (as compared to the total period under analysis). Each client-id can be associated with more than one
record.

In most databases, several temporal attributes can be recorded. Each of these attributes represents a
different temporal dimension of the data. For example, in a medical database the date of birth of a patient, the
dates of medical examinations, the dates of important medical incidents and other dates concerning different
facts of the evolution of the health of a patient can be recorded [19]. In these cases, we can choose one or more
temporal attributes as our target in the mining process.

Definition 2. Let S denote the set of all possible states. A state s 2 S that holds during a period of time [b, f )3 is
denoted as (b, s, f), where b is the start-time and f is the end-time. The (b, s, f) is called a state interval. A state

sequence on S is a series of triples defining state intervals h(b1, s1, f1), (b2, s2, f2), . . . , (bn, sn, fn)i, where bi 6 bi+1

and bi < fi.
If all records in the database D with the same client-id are grouped together and ordered by increasing start-

time, the database can be transformed into a collection of state sequences. Each state sequence is called the
client state sequence (or client sequence for short). As a result, the database D can be viewed as a collection of
such client sequences.

Definition 3. If s is a single state type in S, then s is a temporal pattern, denoted as hsi.

Definition 4. Given n state intervals (bi, si, fi), 1 6 i 6 n, a temporal pattern of size n > 1 is defined by a pair
ðs;MÞ, where s : f1; . . . ; ng ! S maps index i to the corresponding state, and M is an n · n matrix whose ele-
ments M[i, j] denotes the relationship between intervals [bi, fi) and [bj, fj). The number of intervals in the tem-
poral pattern p is denoted as dim(p). If dim(p) = k, then p is called a k-pattern.

As for Höppner [18], we use normalized temporal patterns in which the state intervals within the patterns
are ordered in increasing index according to their start times, end times, and states. Thus, the normalized tem-
poral patterns only require seven relations out of 13 relations listed in [8], namely, before (b), meets (m), over-

laps (o), is-finished-by (fi), contains (c), equals (=), and starts (s), as shown in Fig. 1. The first five relationships
are when the start times differ. In this case, the ordering is based on the start times. If both intervals are iden-
tical, we use the order on the states so that we have A equals B, instead of B equals A. If the start times are the
same and the end times are different, the ordering is based on the end times.
3 As for most temporal databases, we assume the begin time is inclusive but the end time is not.
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Fig. 1. Seven relations in normalized temporal patterns.
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Definition 5. A temporal pattern a ¼ ðsa;MaÞ is a subpattern of b ¼ ðsb;MbÞ, denoted a v b, if
dimðsa;MaÞ6 dimðsb;MbÞ and there is an injective mapping p : f1; . . . ;dimðsa;MaÞg ! f1; . . . ;dimðsb;MbÞg
such that

8i; j 2 f1; . . . ; dimðs ;M Þg : s ðiÞ ¼ s ðpðiÞÞ ^M ½i; j� ¼ M ½pðiÞ; pðjÞ�
4 Fo
a a a b a b
Informally, it can be stated that a pattern a is a subpattern of b if a can be obtained by removing intervals
from b. As an example consider the three temporal patterns in Fig. 2.4 A pattern p1 is a subpattern of p2,
but it is not a subpattern of p3. We can obtain p1 from p2 by removing an interval state D, on the other hand,
removing interval states C and D from p3 would not result in p1.

Definition 6. A client sequence a in D supports a pattern p ¼ ðsp;MpÞ if ðsp;MpÞ v ðsa;MaÞ, where ðsa;MaÞ is a
pattern that represents the relationships between intervals in the client sequence. The support of a pattern p is
defined as rðpÞ ¼ jDp j

jDj , where jDpj is the number of client sequences that support the pattern p, and jDj is the
number of client sequences in the database D.

Definition 7. Given a minimum support minsup, a pattern is called frequent if its support is greater than or
equal to minsup.

As an example, suppose we are given a temporal database D, which stores a list of clinical records, as shown
in Fig. 3. Each record contains a patient-id, a disease-code and a pair of ordered time points, indicating the
period during which the patient exhibited a given disease. Records in the database have been sorted on the
patient-id, the start-time, the end-time, and the disease-code. The last column in the table is used to visualize
the relative position of state intervals in each patient. The database D contains four client sequences (one for
each patient-id), namely, cs1, cs2, cs3, and cs4. Using a minsup of 40%, the frequent temporal patterns are
shown in Table 1.

Definition 8. A richer temporal association rule is an expression X) Y, where X and Y are frequent temporal
patterns such that X v Y (X is a subpattern of Y). The confidence of a richer temporal association rule X) Y

is defined as

rðY Þ

conf ðX ) Y Þ ¼

rðX Þ
r brevity, we do not put labels on the rows of the matrix because they are always similar to the column labels.
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Fig. 2. Example of temporal patterns.
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Given a temporal database D, the problem of mining richer temporal association rules is to generate all richer
temporal association rules that have confidence greater than or equal to the user-specified minimum confi-
dence minconf.

We are interested in generating the forward rules, that is, the rules that are used for predicting the future

rather than in the past. As an example, from a frequent pattern X ¼
A B
¼ o
� ¼

0
@

1
A and a temporal pattern

Y ¼

A B D
¼ o b
� ¼ b
� � ¼

0
BB@

1
CCA (see Table 1), we can get a rule X) Y with the confidence of 100%. The rule can be inter-

preted as if A overlaps B occurs, then it is highly likely that A before D and B before D will also occur.
4. ARMADA – mining richer temporal association rules

As in mining association rules [16], the problem of mining richer temporal association rules can be decom-
posed into two subproblems: first, to find all frequent temporal patterns that have support above minimum
support and, second, to generate the rules from the frequent patterns. In Section 4.1, we describe ARMADA,
our proposed algorithm for discovering frequent temporal patterns, assuming that the database fits into mem-
ory. Section 4.2 outlines the method for discovering frequent temporal patterns from large databases that do
not fit in memory. Our method to generate the rules is given in Section 4.3.
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4.1. Discovering frequent temporal patterns

ARMADA discovers frequent temporal patterns in three steps. First, the algorithm reads the database
into memory. While reading the database, it counts the support of each state and generates frequent 1-pat-
terns. The algorithm then constructs an index set for each frequent 1-pattern and finds frequent patterns
using the state sequences indicated by elements of the index set. Finally, using a recursive find-then-index

strategy, the algorithm discovers all temporal patterns from the in-memory database. Each of these steps is
described in the following sections. Pseudo-code of ARMADA is shown in Algorithm 1. To illustrate it, we
use the algorithm to discover frequent patterns from the example database shown in Fig. 3 and a minsup of
40%.

Definition 9. Given a pattern q, where dim(q) = n, and a frequent state s in the database, a pattern q 0 of size
(n + 1) can be formed by adding the s as a new element to q and setting the relationships between s and each
element of q. The frequent state s is called stem of the pattern q0 and q is the prefix pattern (prefix for short) of
q 0.

Algorithm 1: Pseudo-code for ARMADA
INPUT: a temporal database D, minsup

OUTPUT: all frequent normalized temporal patterns
1: read D into MDB (in-memory database) to find all frequent states
2: for each frequent state s do

3: form a pattern q = hsi, output q
4: construct q-idx = CreateIndexSet(s, h i,MDB)

5: call MineIndexSet(q,q-idx)
6: end for
4.1.1. Step 1 – reading the database into memory

In this first step, the algorithm reads the database D into memory, which will be referred to as MDB here-
after. While reading each client sequence from the database, the algorithm computes the support count of
every state, then finds the set of all frequent states. From the example database, the algorithm finds frequent
states hAi (r = 75%), hBi (r = 75%), hCi (r = 75%), hDi (r = 100%), and hEi (r = 50%). The state A is sup-
ported by three client sequences, i.e., the client sequences cs1, cs3, and cs4. Each of these states will become a
frequent patterns of size 1 (see Table 1).

Notice that the set of all frequent patterns can be grouped into several groups such that the patterns within
a group share the same prefix. For example, from the set of frequent 1-patterns found in this step, the set of all
frequent patterns can be grouped into five groups according to the five prefix patterns: hAi, hBi, hCi, hDi, and
hEi. Each group of frequent patterns then can be mined by constructing corresponding index set and mine
each recursively, as shown in the following steps.
4.1.2. Step 2 – constructing the index set

Let q 0 be a pattern formed by combining a prefix pattern q and a stem s. An index set q 0-idx is a col-
lection of client sequences that contains a pattern q 0. Each element of the index set contains three fields,
namely, ptr_cs, a_intv, and pos. The ptr_cs is a pointer to the client sequence, a_intv is a list of intervals
in the client sequence which generates a pattern q 0, and pos is the first occurring position of s in the client
sequence with respect to q. The pseudo-code for constructing the index set is shown in Algorithm 2. The
third parameter in the algorithm, range-set, is a set of client sequences for indexing, whose value is either
MDB or an index set.
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Algorithm 2: Pseudo-code for constructing index set
1: // Construct the index set q 0-idx

2: // q 0 is a pattern formed by combining q and s
3: // range-set is a set of client sequences for indexing
4: CreateIndexSet(s,q, range-set):
5: for each client sequence cs in range-set do

6: if range-set = MDB then

7: start-pos = 0
8: else

9: start-pos = pos

10: end if
11: for pos = (start-pos+1) to jcsj do

12: if stem state s is first found at position pos in cs then

13: insert (ptr_cs,a_intv,pos) to the index set q 0-idx, where ptr_cs points to cs

14: end if

15: end for

16:end for

17:return index set q 0-idx
From the running example, in order to find the frequent patterns with prefix hAi we construct the index set
hAi-idx. The index set is created by calling CreateIndexSet(A, h i,MDB) and is shown in Fig. 4(a). As we can
see, the index set hAi-idx contains a set of client sequences that support hAi. The value of pos of an index ele-
ment pointing to cs1 is set to 1 because, with respect to the current prefix q = h i, in cs1 a stem A is found at
position 1. Analogously, in cs3 and cs4, a stem A is found at positions 1 and 2, respectively. The a_intv contains
an interval corresponding to a pattern q = hAi. Note that cs2 is not pointed to by any pointer in the index set
because it does not contains a stem A (w.r.t prefix q = h i).
Fig. 4. Examples of index sets.
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4.1.3. Step 3 – mining patterns from the index set

Suppose we have an index set q-idx. The goal of mining the index set q-idx is to find stems with respect to
prefix q. Any state in the indexed client sequences whose position is larger than the value of pos could be a
potential stem (with respect to q). Thus, for every client sequences in q-idx, the algorithm increases the support
count of such state by one. Afterward, the algorithm determines which of the states are frequent and become
stems. Each of these stem will be combined with the prefix q to generate a frequent pattern q 0. Then, recur-
sively, the index set q 0-idx is constructed and mined until no more stem can be found. The pseudo-code for
mining an index set is shown in Algorithm 3.

Algorithm 3: Pseudo-code for mining index set
1: // Mine patterns from an index set q-idx

2: MineIndexSet(q,q-idx):
3: for each cs pointed by index elements of q-idx do

4: for pos = pos + 1 to jcsj in cs do

5: count(s) = count(s) + 1, where s is a potential stem state
6: end for

7: end for

8: find S = the set of stems s

9: for each stem state s 2 S do

10: output the pattern q 0 by combining prefix q and stem s
11: call CreateIndexSet(s,q,q-idx) // to construct the index set q 0-idx

12: call MineIndexSet(q 0,q 0-idx) // to mine patterns with index set q 0-idx

13: end for
Continuing our example, after obtaining hAi-idx, we mine it to find all stems with respect to prefix hAi, by
calling MineIndexSet(hAi, hAi-idx). We process each client sequence in the index set, checking any state
interval appearing after the pos position. The first element of hAi-idx, which points to cs1, has the value of
pos 1. Thus we only focus on the interval states occurring after position 1. As a result, we increase the support

count of a potential stem E for a potential pattern p2E ¼
A E
¼ o
� ¼

0
@

1
A by one. There are also potential stems B

for a pattern p2B, D for a pattern p2D, and C for a pattern p2C, where p2B ¼
A B
¼ o
� ¼

0
@

1
A, p2D ¼

A D
¼ b
� ¼

0
@

1
A,

and p2C ¼
A C
¼ b
� ¼

0
@

1
A, respectively.

Using the same process, we perform the support count for the states occurring after positions 1 and 2 at the
client sequences cs3 and cs4, respectively. After validating the support counts, we obtain stems B (r = 50%), C

(r = 50%), and D (r = 75%) (w.r.t. prefix hAi) to form patterns p2B, p2C, and p2D, respectively.
Let q 0 be a pattern formed by combining prefix q = hAi and s 2 {B,C,D}. The next process is to construct

index set q 0-idx and mine it, recursively, for each s 2 {B,C,D}. We proceed by taking prefix q = hAi and s = B

to obtain a pattern q0 ¼
A B
¼ o
� ¼

0
@

1
A: We call CreateIndexSet(B, hAi, hAi-idx) to construct the index set q 0-idx.

Note that the value of the third parameter, range-set, is the index set hAi-idx, instead of MDB. It means that in
creating q 0-idx, we only need to consider the set of client sequences in hAi-idx (i.e., cs1, cs3, and cs4), rather
than all client sequences in MDB. The resulting index set is shown in Fig. 4(b). With respect to prefix hAi,
a stem B is at position 3 in cs1 and 2 in cs3. We store these values at the field pos of the index set. The interval
values of a state B in cs1 and cs3 are added to the array a_intv. There is no entry created for cs4 because it does
not support a pattern q 0. After creating q 0-idx, the index set hAi-idx is not discarded but it is stored for later
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use. We mine the index set q 0-idx, and find stems C and D that will form patterns p3C ¼

A B C
¼ o b
� ¼ b
� � ¼

0
BB@

1
CCA and

p3D ¼

A B D
¼ o b
� ¼ b
� � ¼

0
BB@

1
CCA, respectively.

Now we have to continue the recursive process on prefix q ¼
A B
¼ o
� ¼

0
@

1
A and stem s 2 {C,D}. Taking the

prefix q and a stem C, we output a pattern q 0 = p3C, and construct q 0-idx. We mine q 0-idx but cannot find
stems, so we stop this process. Next, we continue with prefix q and a stem D. We output a pattern q 0 = p3D,
then create and mine q 0-idx to find a stem C.

Continue the recursive process by taking prefix q = p3D and a stem C, we output a pattern q 0 and create an

index set q 0-idx, where q0 ¼

A B D C
¼ o b b
� ¼ b b
� � ¼ c
� � � ¼

0
BBBB@

1
CCCCA

. The mining of q 0-idx finds no more stems. Since we cannot
continue the recursive process, we repeat the process by taking prefix q = hAi and a stem s, where s 2 {C,D}.

This process will generate patterns:
A C
¼ b
� ¼

0
@

1
A,

A D
¼ b
� ¼

0
@

1
A, and

A D C
¼ b b
� ¼ c
� � ¼

0
BB@

1
CCA. At this stage, we have finished

the mining process of a stem A with prefix q = h i. All frequent patterns can be discovered by continuing the
mining process on stems B, C, D, and E with prefix q = h i.

4.2. Handling large databases

The above algorithm only works if the database fits into memory. If the database is too large to fit into mem-
ory, the frequent temporal patterns are discovered by partition-and-validation technique, as shown in Algorithm
4. First, the database is partitioned so that each partition can be processed in memory by ARMADA. In order to
be frequent in the database, a temporal pattern has to be frequent in at least one partition. Therefore, we can
obtain the set of potential frequent patterns by collecting the discovered patterns after running ARMADA on
these partitions. The next step is the validation step, in which the actual frequent patterns can be identified
through support counting against the data sequences with only one extra database pass. Therefore, ARMADA
requires two passes of database scan to mine large databases that do not fit into memory.

Algorithm 4: Using ARMADA to process large databases
Input: a database D, minsup

Output: a set of frequent temporal patterns F

1: for each partition Di � D do

2: Fi = ARMADA_Gen(Di,minsup)
3: end for

4: C = [nFi

5: for each sequences s 2 D

6: increment support count of all c 2 C supported by s

7: end for

8: F = {c 2 Cjsup(c) P minsup}
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4.3. Generating temporal association rules

After all frequent temporal patterns have been discovered, we can generate temporal association rules as
follows. If Y is a frequent n-pattern, where n > 1, and S = hs1, s2, . . . , sni is a list of states in Y (S has been
ordered in increasing index according to the order within Y), then we will find all subpatterns X of Y which
have ordered list of states Si = hs1, s2, . . . , sii, i = 1,2, . . . , (n � 1). Therefore, for each frequent n-pattern Y,
there are at most (n � 1) subpatterns X of Y. For every such subpattern X, we generate a rule of the form
X) Y if its confidence is greater than or equal to minconf.

The process of finding X starts by taking i = (n � 1) so that X has a list of states Sn�1 = hs1, s2, . . . , sn�1i. If
X) Y has enough confidence, we will generate this rule and continue to test the next subpattern. If X) Y

does not have enough confidence, we do not have to check for X where i < (n � 1) because the generated rule
will have a lower confidence.

5. Maximum gap time constraint

As with all temporal data mining algorithms, ARMADA can easily generate very large numbers of frequent
temporal patterns. One of the reasons is that in the above model, time gaps between intervals in the temporal
patterns are not specified so that some uninteresting patterns are likely to appear. As an example, consider the
database in Fig. 3, in which without specifying the maximum gap, we find a temporal pattern (A before C) is
frequent with the support of 50% (see Table 1). However, this pattern may be insignificant because the time
gap between states A and C is too wide. We therefore introduce a maximum gap time constraint in the mining
to reduce the number of generated patterns and reinforce the significance of mining results.

Definition 10. Let a = h(b1, s1, f1), (b2, s2, f2), . . . , (bn, sn, fn)i, where bi 6 bi+1 and bi < fi, be a client sequence. The
time gap between state intervals i and j, for i < j, is defined as gap(i, j) = bj � fi. The maximum gap of the client
sequence a is defined as d(a) = max{gap(i, j)ji < j, i = 1, . . . , (n � 1) and j = 2, . . . ,n}.

Definition 11. Given a user specified maxgap, a client sequence a supports a pattern p ¼ ðsp;MpÞ if ðsp;MpÞ is a
subpattern of ðsa;MaÞ, and the maximum gap of state intervals that take part in the pattern p is less than or
equal to maxgap.

As an example, consider a client sequence of patient-id 1 in Fig. 3. Originally this client sequence supports a
pattern (B before D). If we add the constraint by taking maxgap = 2, the pattern is no longer supported by the
client sequence because the maximum gap of state intervals involved in the pattern is bigger than maxgap (the
gap between B and D is equal to 4). This is also the case for a client sequence of patient-id 4.

Note that if the value of maxgap is a positive integer, the constraint only affects intervals that have temporal
relation before. If we set maxgap =1, we get the original model as described in Section 3, where there is no
time constraint specified.

Definition 12. Given the minsup and the maxgap, a temporal pattern is called frequent if its support is greater
than or equal to minsup.

To mine frequent patterns with the maximum gap constraint, we use the algorithm discussed in Section 4.1
but modify it so that when searching for stems it also checks the gap between intervals. The method to gen-
erate temporal rules from frequent pattern described in Section 4.3 is still applicable because the property that
if a pattern p is frequent then so all its subpatterns still holds.

6. Experiment results

To assess the performance of our proposed algorithm for discovering frequent temporal patterns, we con-
ducted several experiments on the synthetic datasets. ARMADA was implemented in Java on a 2.4 GHz Athlon
PC with 512MB of RAM running Windows 2000 Professional.

The synthetic data generation program takes five parameters, namely, the number of client sequences (jDj),
average size of client sequences (jCj), number of maximal potentially frequent temporal patterns (NP), average
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size of potentially frequent temporal patterns (jPj), and number of states (N). The data generation model is
based on the one used for mining association rules [16] with some modification to model the temporal
database.

We first created a random pool of potentially frequent patterns that were used in the generation of client
sequences. The number of potentially frequent patterns was NP. A frequent pattern was generated by first
picking the size of the pattern (the number of states in the pattern) from a Poisson distribution with mean
equal to jPj. Then, we chose the state types randomly (from N state types). We selected the temporal rela-
tionships between consecutive states randomly and formed a pattern. Since we used normalized temporal
patterns (as described in Section 3), the temporal relations were chosen from the set {before, meets, over-

laps, is-finished-by, contains, starts, equal}. Each state in the pattern was then assigned an interval value
according to its temporal relation with the state that comes before it. The interval value of the first state
in the pattern was chosen randomly. If the pattern contains two similar consecutive states, its temporal
relation was set to before. After all potentially frequent patterns are generated, we generated jDj client
sequences. Each client sequence was generated by first determining its size, which was picked from a Pois-
son distribution with mean equal to jCj. Then, each client sequence was assigned a series of potentially
frequent patterns.

We conducted four sets of experiments, by varying the minimum supports, the maximum gaps, the number
of states, and the size of databases (number of sequences). In each set of experiments, we recorded the pro-
cessing times of the algorithm as well as the number of generated frequent patterns.
Fig. 5. Effect of decreasing minimum support.

Fig. 6. Effect of increasing maximum gap.
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First we investigated the effect of varying minimum support on the processing times. We generated three
datasets by setting N = 1000 and NP = 2000. We chose three values of jCj: 10, 15, and 20, and two values
of jPj: 3 and 5. The number of client sequences jDj was set to 10,000. We varied the values of minimum sup-
port from 0.05% to 0.14%, and set the value of maximum gap to 100 time units. Fig. 5 shows the number of
generated patterns and the processing times as the values of minimum support decreases. As expected, as the
minimum support decreases, the processing times increase for all datasets (Fig. 5(a)). This is because as we
decrease the minimum support, the number of generated patterns increases (Fig. 5(b)), resulting in increasing
processing times. The dataset with longer sequences requires more processing times compared to that with
shorter sequences. Consider the dataset C20-P3 (Fig. 5(a)), even though its generated patterns are not always
the highest, its processing times are the highest for all values of minimum support.

The second set of experiments looked into the effect of varying maximum gap on the processing times. We
used the above datasets. We set the value of minimum support to 0.05% but varied the values of maximum gap
from 10 to 100 time units. As shown in Fig. 6(a), the processing times increase as we increase the values of
maximum gap. Similar to the previous experiments, when the maximum gap increases, more frequent patterns
will be generated (Fig. 6(b)), which resulting in increasing processing times. The dataset with longer sequences
requires more processing times compared to that with shorter sequences.

For the third set of experiments, we created two sets of datasets. The first set has jCj = 10 and jPj = 5, while
the second set has jCj = 15 and jPj = 5. We kept the database size constant at jDj = 50,000 and the value of
NP = 2000. We set the values of minimum support and maximum gap to 0.05% and 100, respectively. Fig. 7
shows the processing times and the number of generated patterns when the number of states is increased from
Fig. 7. Effect of increasing number of states.

Fig. 8. Effect of increasing database size.
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1000 to 10,000. It can be seen in Fig. 7(a) that the processing times increase as the number of states is
increased. However, the number of generated patterns tends to decrease as the number of states increases
(Fig. 7(a)).

The last set of experiments investigate how the algorithm scales up as the size of the database increases. We
created two sets of datasets, the first one has jCj = 10 and jPj = 5, while the second one has jCj = 15 and
jPj = 5. All datasets have the values of NP = 2000 and N = 1000. We set the minimum support to 0.05%
and the maximum gap to 100. Fig. 8(a) shows the algorithm scales up linearly as the size of databases increases
from 10K to 100K, regardless of fluctuation on the number of generated patterns.

7. Conclusion and future work

In this paper we have studied the discovery of richer temporal association rules from interval-based data.
We have proposed a new algorithm, ARMADA, by extending MEMISP, an existing algorithm for mining
sequential patterns, to discover the frequent temporal patterns. ARMADA is illustrated using an example
and the method to generate richer temporal association rules from the frequent temporal patterns is described.
In addition, we have proposed a maximum time constraint to reduce the number of patterns generated by the
algorithm. To assess the performance of the algorithm, we conducted experiments on synthetic datasets, vary-
ing the value of minimum supports, the size of maximum gaps, the number of client sequences, and the num-
ber of states.

In summary, we can say that the proposed ARMADA algorithm looks promising as a method for discov-
ering patterns and rules from interval-based data. It reads the database only once, except for large databases
described in Section 4.2. ARMADA does not require candidate generation, it utilizes a simple index advancing
to grow longer temporal patterns from the shorter frequent ones. In the process of growing the patterns,
ARMADA only considers those client sequences indicated by current index set, instead of searching on every
client sequences in the database. It is true that we need the storage to store the index set, in addition to the
memory allocated for the database. However, the size of index set is getting smaller as the prefix pattern to
create the index set getting longer.

Future work to be undertaken by the authors includes an application to real-world problem domains and
enhancements to the interface to facilitate the discovery of temporal patterns and rules directly from relational
temporal databases. Ideally, a temporal mining algorithms should understand all types of relationship and
convention, thus other work that could be considered is the link between relative relationships and the use
of either accepted calendars (for example, the work of Hamilton and Randall [20] and others) and/or mixing
references to relative time with those of absolute time.
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