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Abstract

In this study, we elaborate on the role of information granulation and the ensuing

information granules in description of time series and signal analysis, in general. In-

formation granules are entities of elements (quite commonly, numeric data) that are

combined together (aggregated) owing to their vicinity, similarity and alike. Proceeding

with a given window of granulation (that is an initial collection of numeric data), we

propose an algorithm that produces a complete information granule – fuzzy set. The

principle supported by the method leads to the formation of fuzzy sets that are legiti-

mate in terms of experimental data being at the same time maximized with regard to

their specificity (compactness). It has been shown that information granules can be are

regarded as generic conceptual entities contributing to the description of numeric time

series. In this capacity, they are used as building blocks aimed at achieving high level,

compact, and comprehensible models of signals. More importantly, the phase of in-

formation granulation could be viewed as a prerequisite to more synthetic and abstract

processing such as the one witnessed in syntactic pattern recognition � 2002 Elsevier

Science Inc. All rights reserved.
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1. Introduction

Information granules [2,18–20,13] are viewed as linked collections of objects
(data points, in particular) drawn together by the criteria of indistinguish-
ability, similarity or functionality. Information granules and the ensuing pro-
cess of information granulation is a vehicle of abstraction leading to the
emergence of high-level concepts.

Granulation of information is an inherent and omnipresent activity of hu-
man beings carried out with intent of better understanding of the problem and
coming up with an efficient problem-solving strategy. In particular, granulation
of information is aimed at splitting the problem into several manageable
chunks. In this way, we partition the problem into a series of well-defined
subproblems (modules) of a far lower computational complexity than the
original one we have started with.

Granulation occurs everywhere; the examples of granulating information
are abundant:
• We granulate information over time by forming information granules over

predefined time intervals. This gives rise to the notion of temporal granula-
tion. For instance, one computes a moving average with its confidence inter-
vals.

• In any computer model we granulate memory resources by subscribing to
the notion of pages of memory as its basic operational chunks (then we
may consider various swapping techniques to facilitate an efficient access
to individual data items).

• We granulate information available in the form of digital images – the indi-
vidual pixels are arranged into larger entities and processed as such. We usu-
ally refer to these activities as spatial granulation. This leads us to various
issues of scene description and analysis.

• In describing any problem, we tend to shy away from numbers but rather
start using aggregates and building rules (if–then statements) that dwell on
them.

• We live in an inherently analog world. Computers, by tradition and technol-
ogy, perform processing in a digital world. Digitization of this nature (that
dwells on set theory-interval analysis) is an example of information granula-
tion.

• All mechanisms of data compression are examples of information granula-
tion that is carried in a certain sense.
Overall, there is a profound diversity of the situations that call for in-

formation granulation. There is also panoply of possible formal vehicles to
be used to capture the notion of granularity and provide with a suitable
algorithmic framework in which all granular computing can be efficiently
completed. In the ensuing section, we elaborate on those commonly en-
countered in the literature. Examples of such formal environments include
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set theory, rough sets [11], random sets, shadowed sets [12] or fuzzy sets
[18].

The environment of fuzzy set technology is of particular interest. Fuzzy sets
offer two interesting and useful features supporting processes of information
granulation and the form of information granules resulting therein. First, fuzzy
sets support modeling of concepts that exhibit continuous boundaries. The
overlap between fuzzy sets (that is an inherent phenomenon occurring in the
theory of fuzzy sets) helps avoid a brittleness effect manifesting when moving
from one concept to another. This becomes particularly crucial in the case of
using data that could be affected by some noise. The noisy counterpart may
then have a very profound impact on the performance of any rule-based ar-
chitecture. Second, fuzzy sets exhibit a well-defined semantics and emerge as
fully meaningful conceptual entities – building modules identified in problem
solving [3].

The material is organized into eight sections. We discuss in Section 1 the
essence of information granulation and its realization in the setting of fuzzy
sets (Section 2). Then, in Section 3, we elaborate on some interesting prop-
erties of general classes of membership functions by addressing an issue of
their sensitivity and a distribution of this property along the range of
membership values. The two subsequent sections deal with the development
of the data-justifiable fuzzy sets by presenting the underlying concept and
discussing a detailed algorithm. Section 6 is devoted to two selected appli-
cations of granular data to signal processing such as granular predictive
models and an idea of condensation of numeric signals and their graph
representation. Section 7 includes conclusions. In this study, we consider
synthetic as well as real-world data sets. The first ones help illustrate the
underlying idea. The second group of data sets comes the MIT-BIH database
of ECG signals.

2. Information granulation with the use of fuzzy sets

There are three main ways in which information granules – fuzzy sets or
fuzzy relations can be constructed:
• User-oriented. It is a user or designer of the system who completely identifies

the form of the information granules. For instance, they could be a priori
defined as a series of triangular fuzzy numbers. Moreover, the number of
these terms as well as their parameters are fully specified in advance.

• Algorithmic approach to information granulation. In this case, information
granules come as a result of optimization of a certain performance index
(objective function). Clustering algorithms are representative examples of
such algorithms of unsupervised learning leading to the formation of the in-
formation granules. Quite commonly, the granules are fuzzy sets (or fuzzy
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relations) when using FCM and alike or sets (or relations) when dealing with
the methods such as ISODATA [1,3,5].

• A combination of these two. The methods that fall under this category come
as a hybrid of user-based and algorithmic driven methods. For instance,
some parameters of the information granulation process can be set up by
the user while the detailed parameters of the information granules can be de-
termined (or refined) through some optimization mechanism that is used
during the second phase. The amount of influence coming from the user
and data varies from case to case.
One should become aware of the advantages and potential drawbacks of the

two first methods (the third one is a compromise between the user and data-
driven methods and as such may reduce the disadvantages associated with its
components). The user-based approach, even quite appealing and commonly
used, may not reflect the specificity of the problem (and, more importantly, the
data to be granulated). There could be a serious danger of forming fuzzy sets
not conveying any experimental evidence. In other words, we may end up with
a fuzzy set whose existence could be barely legitimized in light of the currently
investigated data. The issue of the experimental legitimization of fuzzy sets
along with some algorithmic investigations has been studied in detail in [14].
On the other hand, the algorithmic-based approach could not be able to reflect
the semantics of the problem. Essentially, the membership functions are built
as constructs minimizing a given performance index. This index itself may not
capture the semantics of the information granules derived in this fashion.
Moreover, the data-driven information granulation may be computationally
intensive especially when dealing with large sets of multidimensional data (that
are common to many tasks of data mining). This may eventually hamper the
usage of clustering as a highly viable and strongly recommended option in data
mining.

Bearing in mind the computational facet of data mining, we consider a
process of granulation that takes place for each variable (attribute) separately.
There are several advantages to follow this path. First, the already mentioned
computational aspect being essential in data mining pursuits is taken care of.
Second, there is no need for any prior normalization of the data that could
eventually result in an extra distortion of relationships within the database; this
phenomenon has been well known in statistical pattern recognition [6,7]. The
drawback of not capturing the relationships between the variables can be
considered minor in comparison to the advantages coming with this approach.
In building a series of information granules we follow the hybrid approach,
namely we rely on data but provide the number of the linguistic terms in
advance along with their general form (type of membership function).

Before proceeding with the complete algorithm, it is instructive to elaborate
on different classes of membership functions and analyze their role in infor-
mation granulation.
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3. Classes of membership functions and their characterization

There is an abundance of classes of membership functions encountered in
the theory and applications of fuzzy sets. Several useful guidelines as to a
suitable selection are worth underlining:
• Information granules need to be flexible enough to ‘‘accommodate’’ (reflect)

the numeric data. In other words, they should capture the data quite easily so
that the granule become legitimate (viz. justifiable in the setting of experimen-
tal data). This implies membership functions equipped with some parameters
(so that these could be adjusted when required). The experimental justifica-
tion of the linguistic terms can be quantified with the aid of probabilities,
say the probability of the fuzzy event [12,20] Given a fuzzy set A, its proba-
bility computed in light of experimental data X ¼ fx1; x2; ::; xNg originates as
a sum of the membership values.•

ProbðAÞ ¼
XN
k¼1

AðxkÞ=N ;

we say A is experimentally justifiable if the above sum achieves or exceeds a
certain threshold value c.

• Information granules need to be ‘‘stable’’ meaning that they have to retain
their identity in spite of some small fluctuations occurring within the exper-
imental data. This also raises a question of sensitivity of the membership
functions and an issue of its distribution vis-�aa-vis specific values of the mem-
bership grades. We claim that the sensitivity of the membership values
should be more evident for higher membership grades and decay for lower
membership grades. This is intuitively appealing: we are not concerned that
much about the lower membership values while the values close to 1 are of
greater importance as those are the values that imply the semantics of the
information granule. The quantification of this property can be done by
the absolute value of the derivative of the membership function A regarded
as a function of the membership value (u), namely

sðAÞðuÞ ¼ dAðxÞ
dx

����
���� ¼ uðuÞ:

In what follows, we analyze three classes of membership functions such as
triangular, parabolic, and Gaussian fuzzy sets by studying the two criteria
established above.

The triangular fuzzy sets are composed of two segments of linear mem-
bership functions, see Fig. 1(a). The membership function reads as

Tðx; a;m; bÞ ¼
x�a
m�a x 2 ½a;m	;
1� x�m

b�m x 2 ½m; b	

�

(for the rest of the arguments, the membership values are equal to zero).
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It is defined by three parameters that is a modal value (m) and two bounds
(a and b). The left- and right-hand of the fuzzy set are determined separately.
Then the parametric flexibility is available in the design of the information
granule. The sensitivity of A is constant and equal to the increasing or de-
creasing slope of the membership function. The sensitivity does not depend on
the membership value and does not contribute to the stability of the fuzzy set.

The parabolic membership functions are defined by three parameters (a, m,
and b), Fig. 1(b)

Pðx; a;m; bÞ ¼
1� x�m

m�a

� �2
; x 2 ½a;m	;

1� x�m
b�m

� �2
; x 2 ½m; b	;

0 otherwise:

8><
>:

These parameters can make the fuzzy set asymmetrical and help adjust the two
parts of the information granule separately. The sensitivity exhibits an inter-
esting pattern; it achieves the highest values around the membership value
equal to 1 and tempers down to zero when the membership values approach
zero. In this sense, the range of high-membership values of the granule becomes
emphasized, Fig. 2.

The Gaussian membership function is governed by the expression

AðxÞ ¼ expð�ðx� mÞ2=r2Þ

and includes two parameters (m and r). The first one (m) determines the po-
sition of the fuzzy set. The second parameter (r) controls the spread of the
information granule. Gaussian fuzzy sets are symmetrical. This may form a
certain problem when the data exhibit a significant asymmetry that cannot be
easily copied with. The sensitivity pattern exhibits its maximum around the
membership value equal to 0.5, see Fig. 3.

4. The development of data-justifiable information granules: a general strategy

Our objective is to construct fuzzy sets that are legitimized by data. The
problem is posed in the following way:

Fig. 1. Two general classes of triangular (a) and parabolic membership functions (b).
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• Given is a collection of numeric one-dimensional data X ¼ fx1; x2; . . . ; xNg
where xk is a real number. This collection will be also referred to as Con-
struct a fuzzy set A belonging to a certain family of fuzzy sets A (say, trian-
gular, parabolic, etc.) so that it ‘‘legitimized’’ in the sense of its experimental
evidence while being specific enough so that it support is kept small. The
above formulation of the problem has a strong intuitive underpinning. On
one hand, we want the fuzzy set to embrace enough experimental evidence.
On the other hand, the information granule should become specific enough.
These two requirements, that are conflicting to some degree, can be articu-
lated in the following manner.

• Maximize the sum of membership values.
• XN

k¼1

AðxkÞ

Fig. 2. Sensitivity pattern of the parabolic membership function with m ¼ 7; a ¼ 3; shown is an

increasing portion of the membership function (a) and its derivative (b).
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(note that the above is just proportional to the probability of the fuzzy event
A manifested through the discrete data X).

• Minimize the support of the fuzzy set that leads to higher specificity

measureðsuppðAÞÞ ¼ ðb� aÞ;
where ‘‘a’’ and ‘‘b’’ are the bounds of the support of A. Refer to Fig. 4
illustrating the character of these two requirements along with their con-
flicting nature: the fuzzy set in Fig. 4(a) is very ‘‘specific’’ yet it does carry a
very limited experimental evidence (note a limited number of data ‘‘em-
braced’’ by the fuzzy set). Fig. 4(b) reveals an opposite situation: we have an
information granule of a large size (not being specific) but supported by a
significant number of data points.
We can combine these two in a form of a single index Q being a ratio of

these two

Q
XN
k¼1

AðxkÞ=measureðsuppðAÞÞ ¼
XN
k¼1

AðxkÞ=ðb� aÞ: ð1Þ

Fig. 3. Sensitivity pattern of the Gaussian membership function with m ¼ 5; s ¼ 2; membership

function (a) and its derivative (b).
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Apparently, in light of the above requirements, Q has to be maximized

max
p

Q

with p denoting a collection of the parameters of the membership function to
be optimized.

The detailed way in which this optimization is carried out will be discussed
in the subsequent section.

5. The design of information granules: a detailed algorithm

In what follows, we confine ourselves to modal fuzzy sets. This helps us
design a general algorithm while not loosing generality of the resulting con-
struct. We can envision that the property of modality is a highly desired
property retaining the semantics of the information granule. Moreover the
modal nature of the membership function helps us handle the development of

Fig. 4. Information granules-fuzzy sets satisfying one of the optimization criteria; see a detailed

description in the text.
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the fuzzy set by looking into its decreasing portion and increasing portion
separately.

The process of the formation of the information granules can be split into
two phases:
• Determining the numeric representative of the data set.
• Building the detailed membership function (here we assume that its form is

given a priori).
In the first phase, we may consider the numeric representative of the data to

be the first, quite rough descriptor of X. This phase does not involve granular
entities at all but alludes to a numeric ‘‘compression’’ of the data set. In this
case numerous, well-known methods exist: a mean value, median, etc. Antic-
ipating the second, more refined phase, our choice is to proceed with the me-
dian. Median is a robust estimator so its value does not depend on any outliers
(the property that does not hold for the mean value). The calculations of the
median are also straightforward. If X is ordered, the median splits the data set
in halves. If X is unordered, the median (med) is a solution to the following L1 -
optimization problem

min
m

XN
k¼1

jxk � mj ¼
XN
k¼1

jxk �medj:

The median is taken as the modal value of the fuzzy set. This splits the data
into two subsets that are processed separately leading to the computations of
the left- and right-hand portion of the membership function of A. The pa-
rameters of A are then determined separately. In some sense, we can view the
second phase of the formation of the information granules as a refinement of
the ‘‘compression’’ scheme already initiated by the numeric representative of X
(that is its median). Here, two main approaches can be exercised, Fig. 5:
• Data-driven: we select the values of the parameters of the membership func-

tion based on the finite number of data meaning that they assume some dis-
crete values implied by the original data.

• Optimization approach.
The first method is straightforward and does not require any excessive opti-
mization effort. We sweep through all data points considering each of them to

Fig. 5. Detailed computing of the parameter (cutoff point a) of the fuzzy set.
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be a potential value of the parameter of the membership function (cutoff point,
that is a). The one that maximizes the performance index

QðaÞ ¼
X
k¼1

N

xk<med

AðxkÞ=ðmed� aÞ

Fig. 6. A synthetic time series.

Fig. 7. Data to be granulated – a segment (granulation window) of the entire data set.
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forms the solution to the problem QðaoptÞ ¼ maxQðaÞ. Note that in the above
formulation we were dealing with the increasing portion of the membership
function. Evidently, the same process is carried out for the decreasing portion
of the fuzzy set.

The second approach, that is a full-fledged optimization method, maximizes
Q over all possible values of ‘‘a’’. This process could lead to the higher values
of the performance index yet it comes with more profound computational
overhead.

Fig. 8. Performance index Q versus the lower bound of the fuzzy set: direct enumeration (a) and

optimization (b).
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As a numeric illustration, we discuss a synthetic data set is shown in Fig. 6
which represents a discrete time series.

To illustrate the underlying optimization process, let us consider a section of
20 successive samples (granulation window) of the synthetic time series, Fig. 7.
The granulation is realized with the use of the parabolic fuzzy set (parabolic
membership function).

The computed median of this granulation window is equal to 0.245033.
Determining the bounds of the parabolic membership function, we get the

following values of the cutoff points:
• Using the direct method these are equal to 0.00 and 0.245, respectively. Note

that the range of the amplitude of this segment of the time series is equal to
[0.000000, 0.311258].

Fig. 9. Performance index Q versus the upper bound of the fuzzy set: direct enumeration (a) and

optimization (b).
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• Optimizing the cutoff points, we obtain the values equal to 0.00 and 0.257.
These are different and produce slightly higher values of the performance in-
dex Q.
The plots of the performance index obtained for the two methods are

illustrated in Figs. 8 and 9.
In the sequel, we consider another granulation window coming from the

entire data set and illustrated in Fig. 10.
This segment of data is spread between 0. 139 and 0.232 with the median

equal to 0.1655. The results of computing the bounds of the parabolic fuzzy set
are contained in Figs. 11 and 12.

6. Some applications of granular models of signals

Signal processing is predominantly numeric. Numeric data are processed in
a linear or nonlinear fashion. Once we get into information granules, they give
rise to a new dimension of signal analysis and signal processing. Interestingly,
some of already existing pursuits of signal analysis and classification such as
syntactic pattern recognition dwell on symbolic elements, see [15–17]. In this
section, we elaborate on two interesting ideas that directly originate from the
ideas of granular computing.

6.1. Predictive description of granular models

The first-order linear systems are in common usage. We expand on it by
proposing a first-order granular dynamic model linking the actual information
granule with the predicted one. The underlying formula reads as follows:

Fig. 10. Data to be granulated.
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B ¼ A� oAT ;

where A and oA are the information granules of the signal describing its current
status (namely, an amplitude A and the trend of the granule described by the
first-order derivative, oA). Both A and oA are determined as fuzzy sets (trian-
gular, parabolic, etc.) based on the numeric data contained in the granulation
windows. More specifically, A is obtained through the direct enumeration of
the data fx1; x2; . . . ; xNg whereas oA originates from the same construction
applied to fx2 � x1; x3 � x2; . . . ; xN � xN�1g. The size of the temporal granule is

Fig. 11. Performance index Q versus the lower bound of the fuzzy set: direct enumeration (a) and

optimization (b).
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denoted by T. The above expression is a shorthand symbolic notation and
requires some clarification: First, the operation of addition need to be treated
in a sense of addition of two fuzzy numbers (with given membership functions).
Second, the multiplication occurring above is completed for a single numeric
value (T), the result is easy to compute and this multiplication does not affect
the form (class) of the membership function. As a matter of fact, it realizes a
simple scaling process. The size of the temporal granule (T) modulates a level
of impact of the changes ðoAÞ on the predicted information granule and is
subject to some optimization procedure. In other words, we look for an

Fig. 12. Performance index Q versus the upper bound of the fuzzy set: direct enumeration (a) and

optimization (b).
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optimal value of T, Topt, so that the predicted information granule B matches
the information granule B0 manifesting in the time series.

6.2. Condensation of numeric signals

Naturally, information granules help ‘‘condense’’ the signal and represent it
in the form of the sequence of information granules – fuzzy numbers. In a
nutshell, this type of condensation moves us up from the numeric level up to
the symbolic processing layer. The size of the granules (granulation windows
and subsequently fuzzy sets) implies a level of abstraction that is achieved. The
level of abstraction is essential in many possible ways. First, we can develop
models that capture and articulate relationships at the higher level of ab-
straction. This leads to models that are easier to understand and which give a

Fig. 13. The web of prototypical information granules.

Table 1

Information granules (the size of the segments – granulation windows is equal to 20 elements)

AðKÞ oAðKÞ

0.000000 0.245033 0.264901 )0.039735 0.006623 0.039735

0.145695 0.165563 0.198675 )0.026490 )0.006623 0.013245

0.086093 0.218543 0.278146 )0.006623 0.006623 0.013245

0.384106 0.417219 0.523179 )0.026490 0.026490 0.059603

0.569536 0.602649 0.668874 )0.046358 0.000000 0.066225

0.847682 0.880795 1.000000 )0.026490 0.013245 0.039735

0.821192 0.900662 0.966887 )0.039735 )0.006622 0.013245
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better insight into the nature of the phenomenon. The information granules
serve as basic building blocks used afterwards in a variety of models. For in-
stance, syntactic pattern recognition dwells on a family of structural elements,
see [4,8–10,15]. In this case these structural elements are just fuzzy numbers.
For each granulation window, we define a fuzzy set capturing the amplitude of
the signal and another fuzzy set describing its changes. This leads to the pair
ðAðKÞ; oAðKÞÞ (in contrast to the previous notation in the original space, we use
a capital letter to denote that this concerns a different time scale). More

Fig. 14. Plots of AðKÞ (granulation window equal to 7).

Fig. 15. Plots of AðKÞ (granulation window equal to 20).
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descriptively, the granulation process and the ensuing representation can be
described as follows:

fxð1Þ; xð2Þ; . . . ; xðkÞ; . . .g ) fðAð1Þ; oAð1ÞÞ; . . . ðAðKÞ; oAðkÞÞ; . . .g:

While the above representation gives us a certain insight into the sequence of
the information granules, they can be connected together in the form of a web

Fig. 16. Plots of oAðKÞ (granulation window equal to 20).

Fig. 17. Plots of AðKÞ (granulation window equal to 30).
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of generic entities. More specifically, as the number of the information granules
(or their combinations) AðKÞ, oAðKÞ could be high, they are clustered
(grouped) and then used as the components of the web. Denote the prototypes
(representatives) of the clusters by ðAð1Þ; oAð1ÞÞ; . . . ; ðAðcÞ; oAðcÞÞ where ‘‘c’’
stands for the number of the clusters. The clustering method is secondary to
this problem; a FCM method or its relative could be a plausible choice [1]. The
collection of the information granules is then mapped onto the structure of the
prototypes. This mapping is realized by determining the connections between
the nodes (prototypes), Fig. 13.

Fig. 18. Plots of oAðKÞ (granulation window equal to 30).

Fig. 19. An original ECG signal (QRS complex).
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6.3. Experimental studies

In this section, we continue the numerical analysis we started in Section 5.
Proceeding with the signal in Fig. 6, we get its description summarized in
Table 1. The table includes information granules describing the amplitude of
the signal as well as its changes, oA.

Fig. 20. Condensed ECG signal (the size of the granulation window equal to 8).

Fig. 21. Condensed ECG signal (the size of the granulation window equal to12).
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The series of figures, Figs. 14–18 illustrates the plots of information granules
(AðKÞ and AðKÞ) for several selected values of K. The bounds of the parabolic
fuzzy sets are marked using a dotted line. An observation is in place: the larger
the granulation window, the more synthetic and concise the description
becomes while the granules themselves get broader.

Fig. 22. Condensed ECG signal (the size of the granulation window is equal to 14).

Fig. 23. An example ECG signal.
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In the current example, we consider an ECG signal, Fig. 19 and proceed with
its granulation. By varying the size of the granulation window, various granular
representations of the same initial signal are obtained, see Figs. 20–22.

Fig. 23 illustrates another ECG signal while Fig. 24 shows the results of its
temporal granulation.

In the sequel, we exploit the predictive capabilities of the model. We con-
sider two temporal windows of 8 and 9 successive time samples. The perfor-
mance index (V) expressed as a sum of absolute distances between the
parameters of the predicted information granule B and the one ðB0Þ resulting
from the granulation of the experimental data,

V ¼
X
K

fjaðKÞ � a0ðKÞj þ jmðKÞ � m0ðKÞj þ jbðKÞ � b0ðKÞjg:

In the above performance index, aðKÞ, mðKÞ, bðKÞ and a0ðKÞ, m0ðKÞ, b0ðKÞ are
the parameters of B and B0, respectively. In both cases, refer to Fig. 25, V
exhibits a clearly visible minimum. Its location depends upon the size of the
information granules used in the model.

7. Conclusions

In this study, we have discussed the role of information granulation and the
ensuing information granules in description of time series. The detailed

Fig. 24. Granulation of the ECG signal; segmentation window is equal to 8.
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algorithm of information granulation produces information granules – fuzzy
sets that are legitimate in terms of experimental data while still sustain their
specificity. It has been shown that information granules can be are regarded as
generic conceptual entities contributing to the description of numeric time
series. In this capacity, they are used as building blocks aimed at achieving high
level, compact, and comprehensible models of signals. More importantly, the
phase of information granulation could be viewed as a prerequisite to more
synthetic and abstract processing such as the one encountered in syntactic
pattern recognition.

Fig. 25. V versus T for two selected values of the granulation window equal to 8 (a) and 9 (b).
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