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Abstract 

There are three basic concepts that underlie human cognition: granulation, organization and causation. Informally, 
granulation involves decomposition of whole into parts; organization involves integration of parts into whole; and 
causation involves association of causes with effects. 

Granulation of an object A leads to a collection of granules of A, with a granule being a clump of points (objects) drawn 
together by indistinguishability, similarity, proximity or functionality. For example, the granules of a human head are the 
forehead, nose, cheeks, ears, eyes, etc. In general, granulation is hierarchical in nature. A familiar example is the 
granulation of time into years, months, days, hours, minutes, etc. 

Modes of information granulation (IG) in which the granules are crisp (c-granular) play important roles in a wide 
variety of methods, approaches and techniques. Crisp IG, however, does not reflect the fact that in almost all of human 
reasoning and concept formation the granules are fuzzy (f-granular). The granules of a human head, for example, are 
fuzzy in the sense that the boundaries between cheeks, nose, forehead, ears, etc. are not sharply defined. Furthermore, the 
attributes of fuzzy granules, e.g., length of nose, are fuzzy, as are their values: long, short, very long, etc. The fuzziness of 
granules, their attributes and their values is characteristic of ways in which humans granulate and manipulate 
information. 

The theory of fuzzy information granulation (TFIG) is inspired by the ways in which humans granulate information 
and reason with it. However, the foundations of TFIG and its methodology are mathematical in nature. 

The point of departure in TFIG is the concept of a generalized constraint. A granule is characterized by a generalized 
constraint which defines it. The principal types of granules are: possibilistic, veristic and probabilistic. 

The principal modes of generalization in TFIG are fuzzification (f-generalization); granulation (g-generalization); and 
fuzzy granulation (f.g-generalization), which is a combination of fuzzification and granulation. F.g-generalization 
underlies the basic concepts of linguistic variable, fuzzy if-then rule and fuzzy graph. These concepts have long played 
a major role in the applications of fuzzy logic and differentiate fuzzy logic from other methodologies for dealing with 
imprecision and uncertainty. What is important to recognize is that no methodology other than fuzzy logic provides 
a machinery for fuzzy information granulation. 
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TFIG builds on the existing machinery for fuzzy information granulation in fuzzy logic but takes it to a significantly 
higher level of generality, consolidates its foundations and suggests new directions. In coming years, TFIG is likely to 
play an important role in the evolution of fuzzy logic and, in conjunction with computing with words (CW), may well 
have a wide-ranging impact on its applications. The impact of TFIG is likely to be felt most strongly in those fields in 
which there is a wide gap between theory and reality. © 1997 Elsevier Science B.V. 
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1. Preamble 

As the papers in this issue make amply clear, 
during the past decade fuzzy logic has evolved into 
a well-structured system of concepts and tech- 
niques with a solid mathematical foundation and 
a widening array of applications ranging from basic 
sciences to engineering systems, social systems, bio- 
medical systems and consumer products. 

And yet there is a basic issue in fuzzy logic that 
has not been highlighted to the extent that it 
should. The issue is the centrality of the role of 
fuzzy information granulation - a mode of granula- 
tion which underlies the concepts of linguistic vari- 
able, fuzzy if-then rule and fuzzy graph. Clearly, 
the machinery of fuzzy information granulation has 
played and is continuing to play a pivotal role in 
the applications of fuzzy logic. But what is begin- 
ning to crystallize is a basic theory of fuzzy in- 
formation granulation (TFIG) which casts fuzzy 
logic in a new light and, in time, may come to be 
recognized as its quintessence. This is the percep- 
tion that I should like to articulate in this paper. 

My perception may be viewed as an evolution of 
ideas rooted in my 1965 paper on fuzzy sets [24]; 
1971 paper on fuzzy systems [26]; 1973-1976 
papers on linguistic variables, fuzzy if-then rules 
and fuzzy graphs [27-30]; 1979 paper on fuzzy sets 
and information granularity [31]; 1986 paper on 
generalized constraints [32] and 1996 paper on 
computing with words [37]. Furthermore, it re- 
flects many important contributions by others both 
to the foundations of fuzzy logic and its applica- 
tions. Among my papers, the 1973 paper in which 
the basic concepts of linguistic variable and fuzzy 
if-then were introduced may be viewed as a turning 
point at which the foundation of TFIG was laid. 

In what follows, what I will have to say should be 
viewed as a summary rather than a full exposition. 

A more detailed account of the theory of fuzzy 
information granulation is in the process of 
gestation. 

2. Introduction 

Among the basic concepts which underlie human 
cognition there are three that stand out in import- 
ance. The three are: granulation, organization and 
causation. In a broad sense, granulation involves 
decomposition of whole into parts; organization 
involves integration of parts into whole; and causa- 
tion relates to association of causes with effects 
(Fig. 1). 

Informally, granulation of an object A results in 
a collection of granules of A, with a granule being 
a clump of objects (or points) which are drawn 
together by indistinguishability, similarity, prox- 
imity or functionality (Fig. 2). In this sense, the 
granules of a human body are the head, neck, arms, 

from whole to parts 
(analysis) j ~  

Fig. 1. Fundamental concepts in human cognition: granulation, 
organization and causation. 
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- -  universe of  discourse 

granule 

• t y p i c a l l y ,  a g r a n u l e  i s  a fuzzy set  

Fig. 2. A granule is a clump of objects (or points) which 
are drawn together by indistinguishability, similarity, proximity 
or functionality. 

chest, etc. In turn, the granules of a head are the 
forehead, cheeks, nose, ears, eyes, hair, etc. In gen- 
eral, granulation is hierarchical in nature. A famil- 
iar example is granulation of time into years, years 
in months, months into days and so on. 

Modes of information granulation (IG) in which 
the granules are crisp (c-granular) play important 
roles in a wide variety of methods, approaches and 
techniques. Among them are: interval analysis, 
quantization, rough set theory, diakoptics, divide 
and conquer, Dempster-Shafer theory, machine 
learning from examples, chunking, qualitative pro- 
cess theory, decision trees, semantic networks, ana- 
log-to-digital conversion, constraint programming, 
Prolog, cluster analysis and many others. 

Important though it is, crisp information gran- 
ulation (crisp IG) has a major blind spot. More 
specifically, it fails to reflect the fact that in much, 
perhaps most, of human reasoning and concept 
formation the granules are fuzzy (f-granular) rather 
than crisp. In the case of a human body, for 
example, the granules are fuzzy in the sense that the 
boundaries of the head, neck, arms, legs, etc. are not 
sharply defined. Furthermore, the granules are as- 
sociated with fuzzy attributes, e.g., length, color and 
texture in the case of hair. In turn, granule at- 
tributes have fuzzy values, e.g., in the case of the 
fuzzy attribute length (hair), the fuzzy values might 
be long, short, very long, etc. The fuzziness of gran- 
ules, their attributes and their values is character- 
istic of the ways in which human concepts are 
formed, organized and manipulated (Fig. 3). 

A point that is worthy of note is that at- 
tributes may be associated with two or more 
granules, in which case they might be referred 
to as intergranular attributes. An example of an 
intergranular attribute is the distance between ears, 

gran~ 

attribL 

example 

m 

m 

fuzzy granules 

fuzzy attributes 

fuzzy values 

head .~ nose + h a i r  + left cheek ÷ right cheek + ... 

hair ~ length + color + texture ÷ ... 

length ~ long + short + very long + ... 

Fig. 3. Basic structure of fuzzy information granulation: 
granulation, attribution and valuation. 

with the understanding that ears are f-granules of 
head. 

In human cognition, fuzziness of granules is a di- 
rect consequence of fuzziness of the concepts of 
indistinguishability, similarity, proximity and func- 
tionality. Furthermore, it is entailed by the finite 
capacity of the human mind and sensory organs to 
resolve detail and store information. In this per- 
spective, fuzzy information granulation (fuzzy IG) 
may be viewed as a form of lossy data compression. 

Fuzzy information granulation underlies the re- 
markable human ability to make rational decisions 
in an environment of imprecision, partial know- 
ledge, partial certainty and partial truth. And yet, 
despite its intrinsic importance, fuzzy information 
granulation has received scant attention except in 
the domain of fuzzy logic, in which, as was pointed 
already, fuzzy IG underlies the basic concepts of 
linguistic variable, fuzzy if-then rule and fuzzy 
graph. In fact, the effectiveness and successes of 
fuzzy logic in dealing with real-world problems rest 
in large measure on the use of the machinery of 
fuzzy information granulation. This machinery is 
unique to fuzzy logic and differentiates it from all 
other methodologies. In this connection, what 
should be underscored is that when we talk about 
fuzzy information granulation we are not talking 
about a single fuzzy granule; we are talking about 
a collection of fuzzy granules which result from 
granulating a crisp or fuzzy object. 

The theory of fuzzy information granulation 
(TFIG) outlined in this paper builds on the existing 
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machinery of fuzzy IG in fuzzy logic but goes far 
beyond it. Basically, TFIG draws its inspiration 
from the informal ways in which humans employ 
fuzzy information granulation but its foundation 
and methodology are mathematical in nature. 

In this perspective, fuzzy information granula- 
tion may be viewed as a mode of generalization 
which may be applied to any concept, method or 
theory. Related to fuzzy IG are the following princi- 
pal modes of generalization. 
(a) Fuzzification (f-generalization). In this mode of 

generalization, a crisp set is replaced by a fuzzy 
set (Fig. 4). 

(b) Granulation (g-generalization). In this case, 
a set is partitioned into granules (Fig. 5). 

(c) Randomization (r-generalization). In this case, 
a variable is replaced by a random variable. 

(d) Usualization (u-generalization). In this case, 
a proposition expressed as X is A is replaced 
with usually (X is A). 

These and other modes of generalization may be 
employed in combination. A combination that is of 

r i f icat ion 

fuzzy 

particular importance is the conjunction of fuzzifi- 
cation and granulation. This combination plays 
a pivotal role in the theory of fuzzy information 
granulation and fuzzy logic, and will be referred to 
as f.g-generalization (or f-granulation or fuzzy 
granulation). 

As a mode of generalization, f.g-generalization 
may be applied to any concept, method or theory. 
In particular, in application to the basic concepts of 
variable, function and relation, f.g-generalization 
leads, in fuzzy logic, to the basic concepts of linguis- 
tic variable, fuzzy rule set and fuzzy graph (Fig. 6). 
These concepts are unique to fuzzy logic and play 
a central role in its applications. 

The distinctive concepts of f-generalization, g- 
generalization, r-generalization and f.g-generaliz- 
ation make a significant contribution to a better 
understanding of fuzzy logic and its relation to 
other methodologies for dealing with uncertainty 
and imprecision. In particular, crisp g-generaliz- 
ation of set theory and relational models of data 
lead to rough set theory [18]. F-generalization of 
classical logic and set theory leads to multiple- 
valued logic, fuzzy logic in its narrow sense and 
parts of fuzzy set theory (Fig. 7). But it is f.g-gener- 
alization that leads to fuzzy logic (FL) in its wide 
sense and underlies most of its applications. This 
is a key point that is frequently overlooked in 

1 

0 
a b U 

a~<X~<b XisA 

Fig. 4. Fuzzification: crisp set --* fuzzy set. 

U 

ation crisp : granule 

graph 

ation fuzzy 

or fuzzy 

Fig. 5. Granulation.  Crisp granulation: crisp set is partit ional 
into crisp granules. Fuzzy granulation: crisp or fuzzy set is 
parti t ioned into fuzzy granules. 

~t ~t 
1 ~nulatlon 1 

variable: "~ 
0 X 0 ^ 

y Y 
~'y graph 

function: ~ hi  

0 X 0 X 
f l e f g ( ~ . A i x  B i ) AI 

u u 
" R* 

relation: 
fuzzy graph 

81 

R l s f g ( E A i x  e I ) A I 

Fig. 6. Granulat ion of the basic mathematical  concepts of vari- 
able function and relation. Linguistic variable = f-granular vari- 
able. A fuzzy graph may be represented as a fuzzy rule set and 
vice versa. R isfg T means that R is constrained by the fuzzy 
graph T. 
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~ f-generalization 
~ f-generalization 

~ f-generalizatlon 

IDS ICS _1 

re-translation (linguistic approximation) 
4 

;ation 

Fig. 7. Theories resulting from applying various modes of 
generalization. 

IDS = collection of propositions expressed in a natural language (NL) 
TDS = collection of propositions expressed in a natural language 
explicitation= translation from a natural language into the 

language of generalized constraints (LGC) 
propagation= constraint propagation through the use of the 

rules of inference in fuzzy logic 

Fig, 8. Basic structure of computing with words (CW). 

DCS 

discussions about fuzzy logic and its relation to 
other methodologies. 

The theory of fuzzy information granulation 
serves to highlight the centrality of the concept of 
fuzzy information granulation in fuzzy logic. More 
importantly, the theory provides a basis for com- 
puting with words (CW) [37]. In effect, CW is an 
integral part of TFIG. However, since it is dis- 
cussed elsewhere [37], it will suffice in this paper to 
summarize its essential features. 

The point of departure in CW is the observation 
that in a natural language words play the role of 
labels of fuzzy granules. In computing with words, 
a proposition is viewed as an implicit fuzzy con- 
straint on an implicit variable. The meaning of 
a proposition is the constraint which it represents. 

In CW, the initial data set (IDS) is assumed to 
consist of a collection of propositions expressed in 
a natural language. The result of computation, re- 
ferred to as the terminal data set (TDS), is likewise 
a collection of propositions expressed in a natural 
language. To infer TDS from IDS the rules of 
inference in fuzzy logic are used for constraint 
propagation from premises to conclusions (Fig. 8). 

There are two main rationales for computing 
with words. First, computing with words is 
a necessity when the available information is not 
precise enough to justify the use of numbers. And 
second, computing with words is advantageous 
when there is a tolerance for imprecision, uncer- 
tainty and partial truth that can be exploited to 
achieve tractability, robustness, low solution cost 

and better rapport with reality. In coming years, 
computing with words is likely to evolve into an 
important methodology in its own right with wide- 
ranging applications on both basic and applied 
levels. 

Inspired by the ways in which humans granulate 
human concepts~ we can proceed to granulate con- 
ceptual structures in various fields of science. In 
a sense, this is what motivates computing with 
words. An intriguing possibility is to granulate the 
conceptual structure of mathematics. This would 
lead to what may be called granular mathematics. 
Eventually, granular mathematics may evolve into 
a distinct branch of mathematics having close links 
to the real world. A subset of granular mathematics 
and a superset of computing with words is granular 
computing. 

In the final analysis, fuzzy information granula- 
tion is central to fuzzy logic because it is central to 
human reasoning and concept formation. It is this 
aspect of fuzzy IG that underlies its essential role in 
the conception and design of intelligent systems. In 
this regard, what is conclusive is that there are 
many, many tasks which humans can perform with 
ease and that no machine could perform without 
the use of fuzzy information granulation. 

A typical example is the problem of estimation of 
age from voice. More specifically, consider a com- 
mon situation where A gets a telephone call from B, 
whom A does not know. After hearing B talk for 
5-10 seconds, A would be able to form a rough 
estimate of B's age and express it as, say, "B is old" 
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or "I t  is very likely that B is old", in which both age 
and probability play the role of linguistic, that is, 
f-granulated variables. Neither A nor any machine 
could come up with crisp estimates of B's age, e.g., 
"B is 63" or "The  probability that B is 63 is 0.002". 
In this and similar cases, a machine would have to 
have a capability to process and reason with f- 
granulated information in order to come up with 
a machine solution to a problem that has a human 
solution expressed in terms off-granulated variables. 

A related point is that, in everyday decision- 
making, humans use that and only that information 
which is decision-relevant. For  example, in playing 
golf, parking a car, picking up an object, etc., 
humans use fuzzy estimates of distance, velocity, 
angles, sizes, etc. In a pervasive way, decision- 
relevant information is f-granular. To perform such 
everyday tasks as effortlessly as humans can, a ma- 
chine must have a capability to process f-granular 
information. A conclusion which emerges from 
these examples is that fuzzy information granula- 
tion is an integral part of human cognition. This 
conclusion has a thought-provoking implication 
for AI: Without the methodology of fuzzy IG in its 
armamentarium, AI cannot achieve its goals. 

In what follows, we shall elaborate on the points 
made above and describe in greater detail the basic 
ideas underlying fuzzy information granulation and 
its role in fuzzy logic. 

3. The concept of a generalized constraint 

The point of departure in the theory of fuzzy 
information granulation is the concept  of a general- 
ized constraint [32]. For  simplicity, we shall 
restrict our discussion to constraints which are un- 
conditional. 

Let X be a variable which takes values in a uni- 
verse of discourse U. A generalized constraint on 
the values of X is expressed as X isr R, where R is 
the constraining relation, isr is a variable copula 
and r is a discrete variable whose value defines the 
way in which R constrains X. 

The principal types of constraints and the values 
of r which define them are the following: 

1. Equali ty constraint, r --- e. In this case, X ise a 
means that X = a. 

2. Possibilistic constraint, r = blank. In this case, 
if R is a fuzzy set with membership function 
#R: U ~ [0, 1], and X is a disjunctive (possibilistic) 
variable, that is, a variable which cannot be as- 
signed two or more values in U simultaneously, 
then 

X i s  R 

means that R is the possibility distribution of X. 
More specifically, 

X is R ~ V o s s { X  = u} = pR(u), u E U .  

A simple example of a possibilistic constraint is 
X is small. In this case, P o s s { X  = u} = #~r, au(U). 

Constraints induced by propositions expressed in 
a natural language are for the most part possibilis- 
tic in nature. This is the reason why the simplest 
value, r = blank, is chosen to define possibilistic 
constraints. 

3. Veristic constraint, r = v. In this case, if R is 
a fuzzy set with membership function #R and X is 
a conjunctive (veristic) variable, that is, a variable 
which can be assigned two or more values in U 
simultaneously, then X isv R --. Ver{X  = u} = 
#R(U), Ue U, where V e r { X  = u} is the verity (truth 
value) of X = u. 

An example of a veristic constraint is the follow- 
ing. Let U be the universe of natural languages and 
let X denote the fluency of an individual in English, 
French and German. Then, X isv (1.0 English + 0.8 
French + 0.6 Italian) means that the degrees of 
fluency of X in English, French and Italian are 1.0, 
0.8 and 0.6, respectively. 

It is important to observe that, in the case of 
a possibilistic constraint, the fuzzy set R plays the 
role of a possibility distribution, whereas in the case 
of a veristic constraint R plays the role of a verity 
distribution. What this implies is that, in general, 
any fuzzy, and ipso facto any crisp, set R admits of 
two different interpretations, a More specifically, 
in the possibilistic interpretation the grades of 
membership are possibilities, while in the veristic 

3An insightful discussion of various possible interpretations of 
grades of membership in a fuzzy set is contained in the paper by 
D. Dubois and H. Prade, "The Semantics of Fuzzy Sets," in this 
issue. 
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u o r  

Y isp P 

(X ,Y )  isv Q 

X isrs R ' 

partial knowledge partial truth 
X is A X isv A 

posaibilistic : Mary is young , Age(Mary) is young 

veristic : Robert is fluent in English, French and Italian 
Fluency(Robert) isv (1~English + 0.8/French + 0.6~Italian) 

Fig. 9. Possibilistic and veristic interpretations of a fuzzy set. 

where Q is a joint possibilistic (or veristic) con- 
straint on X and Y, and R is a random set, that is, 
a set-valued random variable. It is of interest to 
note that the Dempster-Shafer theory of evidence 
is in essence a theory of random set constraints. 

7. Fuzzy  9raph constraint, r = fg. In this case, in 
X isf9 R, X is a function and R is a fuzzy graph 
approximation to X (See Section 5). More specifi- 
cally, if X is a function, X : U  ~ V, defined by 
a fuzzy rule set 

interpretation the grades of membership are ver- 
ities (truth values) (Fig. 9). Since in most cases con- 
straints are possibilistic, the default assumption is 
that a fuzzy set plays the role of a possibility 
distribution. 

4. Probabilistic constraint, r = p. In this case, 
X isp R means that X is a random variable and R is 
the probability distribution (or density) of X. 
For  example, X i spN(m,  a z) means that X is 
a normally distributed random variable with mean 
m and variance 0 -2. Similarly, X isp (0.2\a + 0.4\b 
+ 0.4\c) means that X takes the values a, b, c with 

respective probabilities 0.2, 0.4 and 0.4. 
5. Probability value constraint, r = 2. In 

this case, X is2 R signifies that what is con- 
strained is the probability of a specified event, 
X is A. More specifically, X is2 R ~ P r o b { X  is A} 
is R. For example, if A = small and R = likely, 
then X is2 likely means that P r o b { X  is small} is 
likely. 

6. Random set constraint, r = rs. In this case, 
X isrs R is a composite constraint which is a combi- 
nation of probabilistic and possibilistic (or veristic) 
constraints. In a schematic form, a random set 
constraint may be represented as 

Y isp P 

( X , Y )  is Q 

X isrs R 

i fu is A1, then v is B1 

if  u is A2, then v is B 2 

if  u is A,, then v is B,  

where A1 and B1 are linguistic values of u and v, 
then R is the fuzzy graph [26, 28-30, 36], 

R = A l x B 1  + ... + A n X B n  

where Ai x Bi, i = 1 . . . .  , n, is the cartesian product 
of Ai and B~ and + represents disjunction or, more 
generally, an s-norm (Fig. 10). 

A fuzzy graph constraint may be represented as 
a possibilistic constraint on the function which is 
approximated (Fig. 11). Thus, X isfg R ~ X is 

(~i h i  × Bi) • 
In addition to the types of constraints defined 

above there are many others that are more special- 
ized and less common. A question that arises is: 
What purpose is served by having a large variety of 
constraints to choose from. 

A basic reason is that, in a general setting, in- 
formation may be viewed as a constraint on a vari- 
able. For  example, the proposition "Mary is 
young", conveys information about Mary's age by 
constraining the values that the variable Age 
(Mary) can take. Similarly, the proposition 
"Most Swedes are tall" may be interpreted as a 
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Y 

Az 

f *  = ~ A i x  BI  
i 

F fuzzy point  = A ix  Bj 

A i X 

PAx B(U, V) = [J'A(U) ^ [.tB(V) 

= PA(U) t ~B (V )  
t • t-norm 

canonical form 

[proposition in NL l - ~  expllcitation H X isr R [ 

L copula 

• X isr R surface 
• Maryis young 

• John Is honest 
depth • most Swedes are blond 

• Carol fives in a smafl city near San Francisco 

• high inflation causes high interest rates 

• i t  is unlikely that there will be a significant 
increase in the price of oi l  in the near future 

Fig. 12. Depth of explication of propositions in a natural 
language• 

Fig. 10. A fuzzy graph f *  is a disjunction of cartesian products. 

X isfg R 
X = name of a function 
R = fuzzy graph 

= disjunction of Cartesian products 

Y 

f 

0 D 

f Isfg (small x small + medium x large ÷ large x small) 
f is (small x small + medium x large + large x small) 

• a fuzzy graph is a coarse representation of a function 
or a relation or a set 

Fig. 11. Representation of a fuzzy graph constraint as a pos- 
sibilistic constraint. 

possibilistic constraint on the proportion of tall 
Swedes, that is, 

most Swedes are tall 

Proportion (tall Swedes/Swedes) is most 

in which the fuzzy quantifier most plays the role of 
a fuzzy number• 

More generally, in the context of computing with 
words, a basic assumption is that a proposition, p, 
expressed in a natural language may be interpreted 
as a generalized constraint p ~ X isr R. In this in- 
terpretation, X isr R is the canonical form of p. The 
function of the canonical form is to place in evi- 
dence, i.e., explicitate, the implicit constraint which 
p represents• 

In CW [37], the depth of explicitation of a prop- 
osition is a measure of the effort involved in ex- 
plicitating p, that is, translating, p into its canonical 
form. In this sense, the proposition X isr R is a sur- 
face constraint (depth = zero). As shown in Fig. 12, 
the depth of explication increases in the downward 
direction. Thus, a proposition such as "Mary is 
young" is shallow, whereas "it is not very likely that 
there will be a significant increase in the price of oil 
in the near future" is not. 

What we see, then, is that the information con- 
veyed by a proposition expressed in a natural 
language is, in general, too complex to admit of re- 
presentation as a simple, crisp constraint. This is 
the main reason why in representing the meaning of 
a proposition expressed in a natural language we 
need a wide variety of constraints which are sub- 
sumed under the rubric of generalized constraints. 

4. Taxonomy of fuzzy granulation 

The concept of generalized constraint provides 
a basis for a classification of fuzzy granules• More 
specifically, in the theory of fuzzy IG a granule, G, is 
viewed as a clump of points characterized by a gen- 
eralized constraint• Thus, 

G = { X l X  isr R}. 

In this context, the type of a granule is deter- 
mined by the type of constraint which defines it 
(Fig. 13). In particular, possibilistic, veristic and 
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X is A X /sp P 

Lpossib/lity Lprobabllity 
distribution distribution 

X isv V X isr R 

verity - -~  constralnt-~ 
distribution distribution 

Fig. 13. Taxonomy of granulation. 

probabilistic granules are defined, respectively, by 
possibilistic, veristic and probabilistic constraints. 
To illustrate, the granule 

G = { X f X  is small} 

is a possibilistic granule. The granule 

G = {X IX isv small} 

is a veristic granule. And the granule 

G = [ X I X  isp N(m, a2)} 

is a probabilistic (Gaussian) granule. 
As a more concrete illustration consider the 

fuzzy granule Nose of a human head. If we associate 
with each point on the nose its grade of member- 
ship in Nose, the fuzzy granule Nose should be 
interpreted as a veristic granule. Now suppose that 
we associate with the attribute length (Nose) 
a fuzzy value long. The question is: What is the 
meaning of the proposition "Nose is long?" 

Assume that the profile of Nose, N, has the form 
shown in Fig. 14. With each point p on the profile 
are associated two numbers: ~, representing the 
grade of membership ofp in Nose; and/~, the degree 
of relevance of p to the value of the attribute length 
(Nose). In general, fl ~< c~. 

Now let ~7 be a veristic fuzzy set which results 
from a rectification of the profile of Nose (Fig. 14). 
At this point, the original question reduces to 
"What is the length of N?" This question is a famil- 
iar one in fuzzy logic. Assume for simplicity that the 
set is trapezoidal, as shown in Fig. 15. Then, by 
using the a-cuts of ~7, its length may be represented 
as a veristic triangular fuzzy set L(N) (Fig. 15). 
Thus, L(~7) is the answer to the original question. 

g 

1 

O.6 

1 

o 

C~ = degree of belonging p to nose 

= degree of relevance of p to the length of nose 

.¢1 profile 

veristic fuzzy set 

P U 

Fig. 14. Profile of Nose and its rectification. 

r 

d v 

length of nose  is about d 

Fig. 15. Length of a trapezoidal fuzzy set and length of Nose. 

-J~fuzzified L (A )  

L (A )  ~ 1 ~  v-fuzzy 

However, if a single real value of the length of nose 
it required, L(K r) may be defuzzified using, say, the 
COG definition of defuzzification. 

The purpose of this simple example is to show 
how a fuzzy value may be associated with a fuzzy 
attribute of a fuzzy granule. A more complex 
example would be an association of a fuzzy value 
long with the fuzzy attribute (Hair). In this case, the 
problem is very similar to that of associating 
a fuzzy value with the fuzzy attribute unemployment 
for a fuzzy segment of a population in a city, region 
or country. 

In the foregoing discussion, classification of 
granules is based on the types of constraints which 
define them. A different mode of classification 
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involves representation of complex granules as car- 
tesian products or other combinations of simpler 
granules. 

More specifically, let G1 . . . . .  G, be granules in 
Ua, . . . ,  U,, respectively. Then the granule G = 
Ga × ... x G, is a cartesian granule. For simplicity, 
we shall assume that n = 2 (Fig. 16). 

An important elementary property of cartesian 
granules relates to their or-cuts. Thus, if G = 
G1 x G 2 and G~, GI~ and G2a a r e  a-cuts of G, G1 and 
G2, respectively, then 

G~ = Ga, x G2~. 

A cartesian granule, G, may he rotated (Fig. 17). 
More generally, a cartesian granule, G, may be 
subjected to a coordinate transformation defined 
by 

X ~ f ( X ,  Y), 

Y ~ g(X, Y). 

In this case, if G1 and G2 are defined by possibly 
different generalized constraints: 

GI: X isr A 

G2: X iss B 

(cartesian product) of granules 
G=GI x ... x Gn 

I I 
I I 
i i p 

0 G1 
example : G= middle-aged x tall 

a cartesian granule is a non-interactive conjunction 

X 

then the transformed granule G* is defined by 

G*: ( f (X, Y) isrA)  x (9(X, Y)issB). 

A generalized constraint in which what is con- 
strained is a function or a functional of a variable 
will be referred to as a generalized functional con- 
straint (Fig. 18). Such constraints play an important 
role in computing with words. 

The importance of the concept of a cartesian 
granule derives in large measure from its role in 
what might be called encapsulation. 

More specifically, consider a granule, G, defined 
by a possibilistic constraint G = {(X, Y ) I ( X , Y )  
is R}. 

Let Gx and Gr denote the projections of G on 
U and V, the domains of X and Y, respectively. 
Thus, 

#ox(u) = SUpv #o(u, v), u ~ U, v ~ V 

/aG,(v) = sup,/~o(u, v). 

Then, the cartesian granule G +, 

G + = Gx x Gy 

encapsulates G in the sense that it is the least upper 
bound of cartesian granules which contain G. 
(Fig. 19). Invoking the entailment principle in fuzzy 
logic allows us to assert that 

( X , Y )  isG ~ ( X , Y ) i s G  +. 

Thus, G ÷ can be used as an upper approximation 
to G [25]. It should be noted that in the case of 
veristic constraints the entailment principle asserts 

Fig. 16. Cartesian granule. 

Y 

X 

l ifFl(X1, ..., Xm) is Cll and... Fn(X1 ..... Xm) is Cln then YI is I 
Dll and ... Yk is D1k ... I 
ff FII(X 1 ..... Xm) is Cfl and ... Fln(X 1 ..... Xm) is Cin then Y1 is I 
Dn and... Yk is Dik I 

• rule explosion 
• number of rules depends on the choice of features 

Fig. 18. Format of a fuzzy rule set representing a collection of 
Fig. 17. Rotated cartesian granule, possibilistic functional constraints. 
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any granule G can be approximated from above by an 

encapsulating cartesian granule G + 

yA G+ 

0 U 

G* =proju Gxpro j  v G 

• entailment principle 

X i s G  ~ X i s G  + 

Fig. 19. A granule, G; its projection and its encapsulating gran- 
ule, G +. 

G + cartesian encapsulating granule of G 

= intersection of cylindrical extensions of G 

X: 0 X D 

Y] Y] G + 

0 X ~ 0 

G + 

X I 

Fig. 21. Encapsulating granules generated by intersections of 
cylindrical extensions. 

~ R(p,~) (ray) 

vl p= (u,v) (polnO 
o ,¢ 

R(p,~x) = line passing through p in direction ct,  ~x=(0~,02) 

• G~ = cylindrical extension of G in direction 

• ~tG + ( p ) = s u p ( G  nR(p ;~ ) )  
• G~ = smallest cyl inder containing G in direction c~ 

Fig. 20. G + is a cylindrical extension of G in direction ~. 

that 

section of the G, +, is a granule, G +, that encapsu- 
lates G (Fig. 21). This concept of an encapsulating 
granule subsumes that of a cartesian encapsulating 
granule as a special case. 

As shown in [25], an encapsulating granule G + 
may be viewed as an upper approximation to G. 
Dually, as shown in [-25], one can define a lower 
approximation to G. However, these concepts of 
upper and lower approximation of fuzzy granules 
are different from those defined in the theory of 
rough sets [18]. 

(X,Y)isvA ~ (X,Y) isvB 

i f B c A .  
In a more general setting, we can construct a cy- 

lindrical extension of G in the manner shown in 
Fig. 20 [25]. More concretely, the cylindrical exten- 
sion, G + , of G in direction a is a cylindrical fuzzy set 
such that 

#a:(p) = sup(G~R(p; a)) 

where R(p; ~) is a ray (line) passing through p in 
direction e, c~ = (01, 02), where 01 and 02 are the 
angles that define e. By its construction, G~ + encap- 
sulates G. 

Let G + G ÷ be cylindrical extensions of G in a ~ l ,  • • "  , ~ u  

directions ~1, ..-, c%, respectively. Then, the inter- 

5. Fuzzy graphs 

One of the most basic facets of human cognition 
relates to the perception of dependencies and rela- 
tions. In the theory of fuzzy information granula- 
tion, this facet of human cognition underlies the 
very basic concept of a fuzzy graph. 

The concept of a fuzzy graph was introduced in 
[26] and was developed more fully in [28-30]. 
What might be called the calculus of fuzzy graphs 
[-36] lies at the center of fuzzy logic and is employed 
in most of its applications. 

In the context of fuzzy information granulation, 
a fuzzy graph may be viewed as the result of f.g- 
generalization of the concepts of function and rela- 
tion (Fig. 6). 
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As the point of departure consider a function (or 
a relation) f which is defined by a table of the form 

f X I Y  

al bl 

• a2 be2 

a. b. 

F.g-generalization of f results in a function f *  
whose defining table is of the form 

f *  ~2 Y 
A1 B1 

B2 

B. 

(1) 

where X and Y play the role of linguistic (granular) 
variables, with the Ai and Be, i = 1, ..., n, repres- 
enting their linguistic values. The defining table of 
f *  may be expressed as the fuzzy rule set 

f*:  if  X is A1 then Y is B1 

if X is A 2 then Y is B 2 
(2) 

if  X is A ,  then Y is B. .  

It is important to note that in this context a fuzzy 
if-then rule of the form "if  X is A then Y is B" is not 
a logical implication but a reading of the ordered 
pair (A, B). This point is discussed more fully in 
[28, 29]. 

As postulated in [28-30], the meaning of the 
defining table (1) and, equivalently, the fuzzy rule 
set (2), is the fuzzy graph (Fig. 22) 

f *  = A l  x B l  + ... + AnXBn  

= ~ A i × B i ,  i =  1 . . . . .  n 
1 

where + represents disjunction. A point of key 
importance is that the fuzzy graph f *  may be 

I R X Y 

A 1  B 1  

A2 B2 

An Bn 

ff X is  A 1 then Y is  B 1 

if X is A2 then Y is B 2 
.=. 

ff X is An then Y is  B n 

• = fuzzy table 

"~ fuzzy rules 

R=AlXBI+A2xB2+"'+AnXBn I ~ fuzzy graph 

Fig. 22. Representation of a fuzzy function (or relation) as 
a fuzzy table, fuzzy rule set and a fuzzy graph. 

larc 

sm~ 

~ph) 

small medium large 

Fig. 23. A fuzzy graph approximation to a function. 

viewed as a f-granular approximation of f. For 
example, in the case of the function shown in 
Fig. 23, the fuzzy-graph approximation may be ex- 
pressed as 

f *  = small x small + medium 

x large + large x small. 

In this and other cases, the coarseness of granula- 
tion is determined by the desired degree of 
approximation. 

There are four basic rationales for f.g-granula- 
tion of functions and relations. 
1. Crisp, fine-grained information is not available. 

Examples: economic systems, everyday deci- 
sion-making. 

2. Precise information is costly. 
Examples: diagnostic systems, quality control, 
decision analysis. 
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3. Fine-grained information is not necessary. 
Examples: Parking a car, cooking, balancing. 

4. Coarse-grained information reduces cost. 
Examples: Throw-away cameras, consumer 
products. 

Underlying these rationales is the basic guiding 
principle of fuzzy logic: 

Exploit the tolerance for imprecision, uncer- 
tainty and partial truth to achieve tractability, 
robustness, low solution cost and better rapport with 
reality. 

In the context of this principle, the importance of 
f-granulation derives principally from the fact that 
it paves the way for a far more extensive use of the 
machinery of fuzzy information granulation than is 
the norm at this juncture in both theory and 
applications. 

A case in point relates to the use of crisply de- 
fined probability distributions in decision analysis. 
More specifically, although probability theory is 
precise and rigorous, its rapport with the real world 
is far from perfect, largely because most real-world 
probabilities are poorly defined or hard to estimate, 
For example, I may need to know the probability 
that my car may be stolen to decide on whether or 
not to insure it and for what amount. But probabil- 
ity theory provides no ways for estimating the 
probability in question. What  it does offer is a way 
of elicitation of subjective probabilities but begs the 
question of how an estimate of subjective probabil- 
ity can be formed. 

In this and similar cases what may work is f- 
granulation of probability distributions. More spe- 
cifically, assume for simplicity that X is a discrete 
random variable taking values al . . . .  , a, with re- 
spective probabilities p ~ . . . .  , p,. Such distributions 
will be referred to as singular and the probab- 
ilistic constraint on X may be expressed as 
X isp (p~\a~ + ... + p,\a,).  A probability distri- 
bution is semi-granular (singular\granular) if it is 
of the form X isp (p l \A1 + "" + p . \A . )  where 
A1 . . . . .  A. are fuzzy granules. Semi-granular prob- 
ability distributions of this type define a random 
set. Furthermore, they play an important role in the 
Dempster-Shafer theory of evidence. 

A probability distribution is semi-granular 
(granular\singular) if it is of the form X isp (P1 \a~ 

+ ... + P, \a,)  where P1 . . . .  ,P ,  are granular 
probabilities. 

A probability distribution is granular if it is of the 
form 

X isp(P,\A1 + ... + P.\A.) (3) 

signifying that X is a granular random variable, 
taking granular (linguistic) values A1 . . . .  , A. with 
granular (linguistic) probabilities P1, . . . ,  P,. The 
granules A~ . . . . .  A. may be possibilistic or veristic. 
Granular probability distributions of the form (3) 
were discussed in [31] in the context of the 
Dempster-Shafer theory of evidence. 

A simple example of a granular probability dis- 
tribution is shown in Fig. 24. In this example, 

X isp (PI\A1 + P2\Az + P3\A3), (4) 

or, more specifically, 

X isp (small\small + large\medium + small\large). 

An important concept in the context of granular 
probability distributions is that of p-dominance. 
More specifically, if in (4) there is a value, A j, whose 
probability dominates that of all other values of 
X then Aj is said to be p-dominant or, equivalently, 
the usual value of X (Fig. 24). The importance of 
p-dominance derives from the fact that in everyday 
reasoning and discourse it is common practice to 

P3 

P1 

A1 A 2 A3 
t_._ usual (dominant) value 

P= PICA1 + P3~2 + P1~3 

granulated probability distribution 

Fig. 24. A granulated (granular) probability distribution. 
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approximate to 

X isp ( e l \A1  + "" + P , \A , )  

by 

X is Aj 

if A t is a p-dominant value of X. For example, in 
the case of (4), one may assert that 

X is medium (5) 

with the understanding that (5) is not a categorical 
statement but an approximation to 

usually (X is medium) 

where the fuzzy quantifier usually may be inter- 
preted as a fuzzy number which represents the 
probability of the fuzzy event {X is medium}. 

or, equivalently, as a fuzzy graph 

f = ~ A ixB i .  
i 

The question is: What is the point or, more gener- 
ally, the maximizing set at which f is maximized, 
and what is the maximum value of f ?  (Fig. 25) 

The problem can be solved by employing the 
technique of e-cuts. With reference to Fig. 26, if 
Ai. and B~= are e-cuts of A~ and Bi, respectively, then 
the corresponding e-cut of f is given by f~ = 
ZiA~. x B~. From this expression, the maximizing 
fuzzy set, the maximum fuzzy set and maximum 
value fuzzy set can readily be derived, as shown in 
Fig. 27. 

In a similar vein, one can ask "What is the 
integral of f ;  What are the roots of f ;  etc.?" Prob- 
lems of this type fall within the province of comput- 
ing with words [37]. 

6. Fuzzy granulation in a general setting 

As was alluded to already, the methodology of 
f-granulation of variables, functions and relations 
has played and is continuing to play a major role in 
the applications of fuzzy logic. Within the theory of 
fuzzy information granulation, the methodology of 
f-granulation is developed in a much more general 
setting, enhancing the applicability of f-granulation 
and widening its impact. This is especially true of 
f-granulation of functions, since the concept of 
a function is ubiquitous in all fields of science and 
engineering. 

As a simple illustration of this point consider the 
standard problem of maximization of an objective 
function in decision analysis. Let us assume, as is 
frequently the case in real-world problems, that the 
objective function, f, is not well-defined and that 
what we know about f can be expressed as a fuzzy 
rule set 

f*:  if X is Aa then Y is B1 

if X is Az then Y is Bz 

function maximization 

f :  f i X  is smafl then Y is smafl 

i f  X is medium then Y is large 

i f  X is large then Y is small 

problem: maximize f 
f possible IoTtions of maxima 

"x x 

Fig. 25. Maximization of a function, f, defined by a fuzzy rule 
set or a fuzzy graph. 

f = small x smafl + medium x large + large x smafl 

f = Y ,  A i xB /  
i 

f,~ = { (u ,  v)lllt(u, v )_>a}  

f~ =~.,Alox Bi~ 
i 

0 A1. A2. A3~ X:U 

if X is A.  then Y is B. Fig. 26. ~-cuts of the fuzzy graph offi 
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:J 
/ 

maximum 
value set 

i 

maximizing set 

maximum set 

~ O-cut 
O.3-cut 
0.6-cut 

l 
' '  topmost a-cut 

Fig. 27. The maximizing set, the maximum value set and the 
maximum set of a fuzzy graph. 

Another illustration is provided by the extension 
principle [-24, 36, 37-1, which is a basic rule of infer- 
ence in fuzzy logic and is expressible as the infer- 
ence schema 

X i s A  

f (x )  is f(A) 

where f :  U ~ V and 

/~i~a)(v)= sup #~(u). 
ulv=f(u) 

Let us apply f-granulation to f, yielding the rule set 

f: if X is Ai then Y is Bi, i = 1, . . . ,  n. 

In this case, the problem reduces to the familiar 
interpolation schema in the calculus of fuzzy rules: 

X i sA  

if X is A1 then Y is Bt, i =  1, . . . , n  

Y is ~ miABi 
i 

where the matching coefficient mi is given by 

mi = sup(Ac~Ai). 

The examples discussed above suggest an impor- 
tant direction in the development of TFIG. Specifi- 
cally, the examples in question may be viewed as 
f.g-generalizations of standard problems and tech- 
niques. Thus, in the first example the standard 
problem is that of maximization, while in the sec- 
ond problem f.g-generalization is applied to the 
extension principle. 

6.1. The airport shuttle problem 

Another example in this spirit is what might be 
called the Airport Shuttle problem, a problem 
which may be viewed as an f.g-generalization of the 
standard Traveling Salesman problem. In this case, 
an airport shuttle picks up passengers at an airport 
and takes them to specified addresses. The objec- 
tive of the driver is to return to the airport as soon 
as possible (Fig. 28). 

The difference between this problem and the 
Traveling Salesman problem is that in the case of 
the Traveling Salesman problem the cost of going 
from node i to node j is known for all i, j, whereas 
in the Airport Shuttle problem the transit time from 
address i to address j has to be estimated by the 
driver. The driver does so by interpolating the data 
stored in the driver's memory, performing interpo- 
lation in both time and space (Fig. 29). In an intu- 
itive way, the driver approximates to the transit 

~ u r  

J ~~Jairport 
transit time tij : fuzzy probabi l i ty estimate 

from experience and fuzzy interpolation 

Fig. 28. The airport shuttle problem. 

address j 

in memory: 

F-tra v f~elti:cftrave I 

~ j _ ~  address i 

Gt- . o 
~ tkt(t9 

fuzzy values of tkl(t') for k, I and t' which approximate to 
i , j , t .  

double interpolation 

Fig. 29. Interpolation in time and space in the airport shuttle 
problem. 
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time by a coarse granular probability distribution. 
In arriving at a decision on the order in which the 
passengers should be taken to their destinations, 
the driver uses an intuitive form of p-dominance. 
This, of course, is merely a coarse perception of 
what goes on in the driver's mind. 

In the problem under consideration, fuzzy in- 
formation granulation in an intuitive form under- 
lies the human solution. What this suggests is that 
no machine could solve the problem without using, 
as human do, the machinery of fuzzy information 
granulation. How this could be done in detail is 
a challenge that has not as yet been met. 

6.2. The commute time problem 

Another problem of this type, a problem which 
makes the same point, is what might be called the 
Commute Time problem. 

The problem may be formulated in two versions: 
(a) unannotated; and (b) annotated. 

In the unannotated version we are given a time 
series such as 

Ta: {15,18,21,14,20,0,0,13, 0, 

3, 18, 17,0,19, ... } 

with no knowledge of what the numbers represent 
or how they were obtained. The questions posed 
are the following 
1. Does Ta represent the result of a random 

experiment? 
2. If it does, what is the sample space? What are the 

random variables? Is Ta stationary? 
3. Given the elements of T~ up to and including t = i, 

what would be an estimate of Ta at time i + 1? 
The unannotated version has neither a human 

nor a machine solution. In particular, standard 
probability theory provides no answers to the 
posed questions. Nevertheless, there are programs 
which, given an unannotated time series, will come 
up with a prediction. It can be argued that such 
predictions have no justification. 

In the annotated version, the time-series reads: 

Tb: {(Mon, 15), (Tue, 18), (Wed,21), (Thu, 14), 

(Fri, 20), (Sat, 0), (Sun, 0), (Mon, 13) . . . . .  } 

and has the following meaning. 
Tb represents a record of the time it took me to 

commute from my home to the compus, starting 

with Monday, 1 January, 1996; 0 means that I did 
not go to the campus that day; it took longer on 
Wednesday, 3 January, because of rain; usually it 
takes longer on Fridays, etc. 

Suppose that in the morning of Wednesday, 20 
March, I had to estimate the commute time that 
day, knowing that it would be slightly shorter than 
18 min on Wednesday, 13 March, because of the 
Spring recess which started on 18 March. Every- 
thing considered, my estimate might be: around 
18 min. 

The point of this example is that the problem has 
a human solution arrived at through human rea- 
soning based on f-granulated information. Neither 
standard probability theory nor any methodology 
which does not employ the machinery of fuzzy 
information granulation can come up with a ma- 
chine solution. The challenge, then, is to develop 
a theory of fuzzy information granulation which 
can model the ways in which human granulate 
information and reason with it. In a preliminary 
way, this is what we have attempted to do in this 
paper. 

7. Concluding remark 

The machinery of fuzzy information granulation, 
especially in the form of linguistic variables, fuzzy 
if-then rules and fuzzy graphs, has long played 
a major role in the applications of fuzzy logic. What 
has not been fully recognized, however, is the cen- 
trality of fuzzy information granulation in human 
reasoning and, ipso facto, its centrality in fuzzy 
logic. A related point is that no methodology other 
than fuzzy logic provides a conceptual framework 
and associated techniques for dealing with prob- 
lems in which fuzzy information granulation plays, 
or could play, a major role. In the context of such 
problems, the way in which humans employ fuzzy 
information granulation to make rational decisions 
in an environment of partial knowledge, partial 
certainty and partial truth should be viewed as 
a role model for machine intelligence. 

The theory of fuzzy information granulation out- 
lined in this paper takes the existing machinery of 
fuzzy information granulation in fuzzy logic to 
a higher level of generality, consolidates its founda- 
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t ions  a n d  suggests  n ew  d i rec t ions .  In  c o m i n g  years,  
T F I G  is l ikely to p l ay  a n  i m p o r t a n t  role  in  the  
e v o l u t i o n  of  fuzzy logic and ,  in  c o n j u n c t i o n  wi th  
c o m p u t i n g  wi th  words ,  m a y  e v e n t u a l l y  have  a far- 

r e ach ing  i m p a c t  o n  its app l i ca t ions .  
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