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Learning Sequential Patterns for 
Probabilistic Inductive Prediction 

Keith C .  C .  C h a n ,  Andrew K. C .  W o n g ,  Member, IEEE, and David K. Y. Chiu, Member, IEEE 

Absfract-Suppose we are given a sequence of events that are 
generated probabilistidly in the sense that the attributes of one 
event are dependent, to a certain extent, on those observed before 
it. This paper presents an inductive method that is capable of 
detecting the inherent patterns in such a sequence and to make 
predictions about the attributes of future events. Unlike previous 
AI-based prediction methods, the proposed method is particularly 
effective in discovering knowledge in ordered event sequences 
even if noisy data are being dealt with. The method can be divided 
into three phases: (i) detection of underlying patterns in an 
ordered event sequence; (ii) construction of sequence-generation 
rules based on the detected patterns; and (E) use of these rules 
to predict the attributes of future events. The method has been 
implemented in a program called OBSERVER-11, which has been 
tested with both simulated and real-life data. Experimental results 
indicate that it is capable of discovering underlying patterns and 
explaining the behaviour of certain sequence-generation processes 
that are not obvious or easily understood. The performance of 
OBSERVER4 has been compared with that of existing AI-based 
prediction systems, and it is found to be able to successfully solve 
prediction problems programs such as SPARC have failed on. 

I. INTRODUCTION 
UCH research work in inductive learning addresses the M problem of classification. Given a collection of objects 

(events, observations, situations, processes, etc.) described in 
terms of one or more attributes and preclassified into a set of 
known classes, the classification problem is to find a set of 
characteristic descriptions for these classes. Or, equivalently, 
a procedure for identifying an object as either belonging to or 
not belonging to a particular class. If each class of objects is 
considered as exemplifying a certain concept, then, a system 
that is capable of sorting those objects belonging to a class 
from those that do not, can be considered to have acquired the 
concept associated with the class [30]. 

Based on the discovery that there is a discrepancy between 
an individual’s reading and speaking vocabularies, Simon and 
Kotovsky [30], however, observed that there is no necessary 
relationship between the ability of a learning system to identify 
an object as belonging to a concept, and its ability to produce 
examples of that concept. They noted that the acquisition 
of certain kinds of concepts - such as those in the form 
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of serial patterns - can only be measured by a system’s 
ability to produce an object satisfying the concept, rather 
than its ability to determine if an object exemplifies it. For 
instance, a system is considered to have acquired the concept 
‘simple alternation of a and b’ in ‘ababababa--’ only if it 
can extrapolate the letter series by producing the succeeding 
characters (i.e., ‘ba’). 

Since a learning system that is able to acquire the concept 
embedded in a sequence of objects is also able to predict the 
characteristics of future objects based on the acquired concept, 
such a task may be referred to as prediction. More formally, 
the prediction task can be stated in the following way. Suppose 
that we are given an ordered sequence of objects (observations, 
events, situations, phenomena, etc.) described by one or more 
attributes. Suppose also that these objects are generated by a 
certain process in such a way that the attributes of one object 
are dependent on those of the preceding objects. The prediction 
task is, therefore, to find a set of characteristic descriptions 
of the sequence so that, based on these descriptions, the 
characteristics of future objects can be predicted. 

As an illustration of the prediction task, let us suppose that 
we are given a snapshot of an ongoing process which has 
generated a sequence of locomotives shown in Fig. 1. 

Suppose that each locomotive is characterized by four 
attributes: NUMBER OF WHEELS with values [Two, Three, 
Four], LENGTH OF FUNNEL with values {Long, Short, 
Medium}, NUMBER OF STRIPES with values {One, Two, 
Three], and NUMBER OF WINDOWS with values {One, 
Two, Three]. If the attributes of each locomotive in the 
sequence are dependent, to a certain degree, on those preceding 
it, then the prediction problem is to find the rules that governs 
the generation of the sequence and to use these rules to predict 
the characteristics of future locomotives. 

Prediction problems can be categorized into two different 
types: the deterministic prediction (LIP) problem and the 
probabilistic prediction (PP)  problem. If all the attributes 
of an object in a sequence can be predicted with complete 
certainty based on the preceding ones, then the prediction 
problem is deterministic. However, if due to the inherent 
random nature of the process that generates the data or to 
missing, inconsistent, or inaccurate values, an attribute of an 
object can only be predicted with some degree of certainty 
based on those preceding it, then the prediction problem 
is probabilistic. For example, predicting future letters in a 
sequence such as ‘abababababa- -’ is deterministic, since they 
are completely determined by the existing ones; predicting 
weather conditions based on past observations is probabilistic, 
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Fig. 1. A prediction problem involving a sequence of locomotives. 

since weather forecasts cannot usually be made with complete 
certainty. 

Thus the PP problem is, in general, more difficult to solve 
than the DP problem, due to the need to consider proba- 
bilistic variations. It is, however, a more important problem 
to be tackled. This is because the ability to make accurate 
predictions in the presence of uncertainty is very important 
in daily life and is crucial in a wide range of disciplines 
such as business, economics, sociology, medicine, science and 
engineering. An efficient solution to the PP problem would 
be useful for tasks such as predicting weather conditions, 
earthquakes, or volcanic activities; or in the business world for 
predicting and monitoring the consumer index, the behaviour 
of stock markets, etc. 

The need for an efficient solution to the PP problem is 
further evidenced by the construction of expert systems in 
such areas of science and engineering [24], [31], meteorology 
and climatology [ l l ,  [I I], [21], 1281, [32], [38], and business 
and finance [7], [18]. Such systems help decision-makers to 
forecast changes in the future based on knowledge of the past. 
They are built by knowledge engineers laboriously extract- 
ing domain knowledge from experts through interviews, and 
their construction is, therefore, difficult and time-consuming. 
Furthermore, since human judgement is often found to be 
inaccurate and inconsistent in the presence of uncertainty, the 
extracted knowledge is usually also of questionable quality 

To overcome these problems, this paper proposes an effi- 
cient solution strategy to the PP problem based on an AI-based 

[361. 

inductive learning method This method differs from existing 
ones in the following ways: (i) it is data-driven instead of 
model-driven; (ii) it does not require the characteristics of the 
objects in a sequence to be strictly a function of that of those 
preceding them, and (iii) it is able to effectively handle noisy 
data. Based on a newly developed technique for probabilistic 
inference [2], [3], [4], [6], the proposed method can efficiently 
deal with the PP problem by uncovering the hidden relation- 
ships between the attributes of objects located at different 
positions in a sequence. It is also able to (i) quantitatively 
estimate the reliability of these relationships, (ii) combine 
the evidence of all indicators in order to provide the best 
prediction, and (iii) estimate the confidence in such prediction. 
These capabilities of the proposed prediction method enables 
objective prediction knowledge to be acquired rapidly, even 
when some data values are missing or incorrect. 

The proposed method has been implemented in a system 
known as OBSERVER-11. The OBSERVER-I1 has been tested 
with both simulated and real-world data and its performance 
is found to be better, in terms of (i) computational efficiency 
and (ii) predictive accuracy, than some well-known AI-based 
learning systems that deal with the prediction problems. 

11. UNCERTAINTY HANDLING IN 
EXISTING PREDICTION SYSTEMS ' 

The prediction problem was first considered by some psy- 
chologists, with the goal of simulating human cognitive pro- 
cesses. For instance, Simon and Kotovsky proposed a model 
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of human behaviour in solving letter-series extrapolation prob- 
lems [19], [30]. Based on their model, a computer program 
known as the Concept Former was constructed. This program 
is able to discover periodic pattems implicit in some letter 
sequences by searching for letter pairs that are related in the 
sense that they are the ‘same’ or are ‘next’ to each other in 
the alphabet. If such a relationship is found to repeat or to 
be interrupted at regular intervals, the program establishes 
a period boundary. Once such basic periodicity within a 
sequence is determined, the details of the patterns are acquired 
by detecting if this relationship holds between successive 
letters within a period or between letters in corresponding 
positions of successive periods. These acquired pattems are 
then used to extrapolate the letter sequence. 

A number of other programs have also been written to 
handle letter-series extrapolation problems. As with Concept 
Former, these programs acquires a description of a letter series 
by attempting to determine whether or not simple relationships, 
such as ‘same’, ‘next’, ‘next after next’, or ‘predecessor’, 
exist between letters [12], [26] [27], [35]. Even though these 
programs were developed primarily for handling prediction 
problems involving letter series, they can also be used for 
number-sequence extrapolation. These programs can be mod- 
ified slightly so that, other than the relations of ‘same’, ‘next’ 
and ‘previous’ between numbers, arithmetical relationships 
such as ‘addition’, ‘subtraction’, ‘exponentiation’, etc. are also 
considered [15], [17], [20]. Fredkin, for example, used the 
idea of ‘successive difference’ (SD) to determine if a number 
series is generated by a polynomial of degree n [15]. But 
his program is not able to handle polynomial approximations. 
Pivar and Finkelstein modified it later to deal with simple 
polynomials with exceptions (e.g. If n = 10, then f(n) = 33, 
else f(n) = 3n, etc.) [23]. 

If a number sequence fits neither a simple polynomial 
equation nor one with exceptions, then neither Fredkin nor 
Pivar and Finkelstein’s program will work. In such case, Pers- 
son’s approach [26] can be adopted. By applying Newton’s 
forward-difference formula, this approach is able to compute 
the coefficients and the degree of a polynomial approximation 
of a number sequence. 

However, none of these programs that were originally 
developed for letter- or number-series extrapolation can be 
used to deal with prediction problems involving noisy data. 
Furthermore, they are limited to handling DP problems in 
which objects in a sequence are characterized by only one 
attribute - a letter or a number. Their ability to solve real- 
world problems is further restricted by the fact that arithmetic 
relations or relations such as ‘next’, ‘previous’, or ‘next after 
next’ can only be meaningfully defined between numbers or 
letters; they are not able to uncover hidden patterns in object 
sequences characterized by symbolic data measured according 
to the nominal scale 

To deal with DP problems other than number- or letter-series 
extrapolation, AI-based inductive learning programs such as 
the THOTH program [33] can be used. THOTH is capable 
of determining maximal conjunctive generalizations between 
pairs of objects in a sequence so as to construct a set of 
generalized descriptions of the serial patterns underlying it. 

Even though THOTH is capable of handling prediction prob- 
lems involving objects described by multiple attributes, it has 
the disadvantage that it is relatively slow. Furthermore, it can 
only handle prediction problems in which all the characteristics 
of the next object in a sequence can be determined exactly, 
and with complete certainty, based on the previous ones. To 
deal with uncertainty in prediction, the SPARC program was 
developed [ 101, [22]. 

SPARC is capable of handling a certain type of PP problem 
in which a sequence of objects is assumed to be described 
by two different types of attributes: (i) those whose values 
cannot be determined with complete certainty, and (ii) those 
whose values can be determined completely based solely on 
the attribute values of the previous objects. For attributes 
whose values cannot be deterministically predicted, SPARC 
either assumes them to be of the second type and finds an 
over-fitted model, or refuses to make any predictions. For 
attributes whose values can be deterministically predicted, 
SPARC employs a model-directed approach to guide the search 
for suitable prediction rules in a predetermined search space 
which consists of all possible rule models. 

Depending on the application domains, the number of 
rule models that have to be considered by SPARC during 
this searching process may be very large. For example, in 
an attempt to discover the rules that govern the generation 
of a sequence of playing cards in a card game, as many 
as possible rules have to be considered [lo]. Since 
a breadth-first search of such a huge rule space would be 
impossible, the size of the search space has to be restricted. 
The following assumptions are therefore made by SPARC: 
(i) there are three different types of sequence-generating 
rules: periodic, decomposition, and disjunctive normal form 
rules, (ii) one sequence can be transformed into another by 
segmenting, splitting, and blocking, so as to determine if its 
generation process fits these models, (iii) the rule consists of 
a certain number of conjunctive terms on the left-hand side, 
and (iv) substantial amounts of domain-specific knowledge are 
available to guide the searching process. 

In problem domains where domain-specific knowledge is 
unavailable and the assumptions about the possible rule models 
and the different types of sequence transformations cannot be 
validly made, SPARC would, therefore, be unable to discover 
the sequence-generation rules. And it is, for this reason that it 
cannot make predictions about attribute values of an object that 
are not completely determined by the values of those preceding 
it. A further limitation of SPARC is its use of a nearly 
exhaustive search strategy in finding suitable models which 
makes the learning process it employs rather slow. Also, if 
the objects in a sequence are generated probabilistically, as in 
most PP problems, either SPARC refuses to make predictions 
due to the lack of a suitable model in the search space, 
or else the attributes are treated as completely deterministic. 
This not only leads to overfitting, but also to an exploded 
search space consisting of many plausible rule models that 
would render the model-driven leaming approach employed 
by SPARC unfeasible. For these reasons, SPARC cannot 
be practically used in application domains where complete 
certainty is unattainable. 
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Other than the cognitive-model based approaches for solv- 
ing the letter- or number-series extrapolation problems; the 
THOTH program for solving DP problems involving object 
sequences described by one or more attributes; and the SPARC 
program for solving a special type of PP problems involving 
sequences describable by certain kinds of rule models, not 
much work on either the DP or the PP problems has been 
reported in the AI literature. There have been efforts to find 
suitable methods for modeling and reasoning about dynami- 
cally changing systems so as to better predict their behaviour 
[SI, [14]. But, instead of acquiring general descriptions induc- 
tively from partial knowledge of a certain event, these methods 
have mainly been concerned with deductive inference. In other 
words, the prediction problems that these systems are trying to 
tackle are not inductive in nature, and are hence different from 
the type of DP or PP problems that we are concerned with. 

The works of some statisticians to analyze noisy time series 
data is closer in objective to the work described in this paper. 
Unfortunately, time series analysis techniques were mainly 
developed for prediction problems involving quantitative vari- 
ables. They cannot be modified to deal with PP problems 
where (i) the knowledge or concept to be acquired must be 
expressed in symbolic form, and (ii) predictions of qualitative 
variables have to be made based on symbolic representations 
of object sequences. 

In summary, existing prediction systems can only handle 
DP problems. Even though SPARC can be considered an 
exception, it is unable to deal with problems involving data that 
are generated by a probabilistic process or are characterized 
by missing, erroneous, or inconsistent values. To efficiently 
handle PP problems in general, a simple yet effective learning 
method that is considerably different from those described 
above, is proposed. This method is based on a newly developed 
probabilistic inference technique [2], [3], [4], [6] ,  and is able 
to make predictions about a future object whose attributes are 
dependent on those of the observed ones only to a certain 
degree. 

111. DESCRIFTION OF THE -DICTION PROBLEM 
The probabilistic prediction problem can be described more 

formally as follows: suppose that there is an ordered se- 
quence S of M objects, obj l , .  .. , ob jp  ,..., obj,, where 
obj, is located at position p in S. Suppose also that each 
object in the sequence is described by n distinct attributes, 
Attrl , ,  . . . , Attr jp ,  . . . , Attr,,, and that in any instantiation 
of the object description, an attribute Attrj ,  takes on a specific 
value, valj, E domain(Attrj,) = {ujk I k = 1,. . . , J } ,  
which may be numerical or symbolic, or both. 

In the presence of uncertainty, it is possible for some of the 
attribute values that characterize the objects in S to be missing 
or erroneous. It is also possible for the process that generates 
S to have some inherently random element. In either case, 
the attributes of the objects in the sequence can be considered 
as dependent probabilistically on those preceding it. Given 
such a sequence of objects, the PP problem is to find a set of 
prediction rules that describes how S is generated and that can 
be employed to predict the characteristics of a future object. 

I v .  AN INDUCTIVE METHOD FOR THE 
LEARNING OF PREDICTION RULES 

Having described the PP problem, we will now propose an 
inductive learning method to solve it. This method consists of 
three phases: (i) detection of patterns inherent in a sequence 
of objects, (ii) construction of prediction rules based on the 
detected patterns, and (iii) use of these rules to predict the 
characteristics of future objects. 

A. Detection of Sequential Patterns in Noisy Training Data 
For accurate predictions, it is important to know how the 

attribute values of the objects in a sequence are dependent on 
the preceding ones. If the ith attribute of an object that takes 
on vi, is always preceded at 7 positions (or time units) earlier 
by an object whose jth attribute takes on the value wjk, one 
can conclude that vi, is dependent on uj, with a position (or 
time) lag of 7. However, if it is observed that ujk is never 
followed by vi, at T positions later, we can also conclude that 
vi, is dependent (in a negative sense) on ujk with a position (or 
time) lag of 7. That is, whenever an object is observed to have 
the characteristic u j k ,  the object that is located at T positions 
later in the sequence will not possess the attribute value vi,. 
In either case, the jth attribute can be considered as providing 
useful information for the prediction of future objects. 

In the presence of noise in the data, the identification of such 
attributes is not easy. This is because the correlation between 
two attributes is rarely perfect. To make accurate predictions in 
uncertain environments and to avoid overfitting, the presence 
of counter-examples should be tolerated to a certain extent. 
Instead of requiring the correlation between the attributes 
of objects located at different positions in a sequence to be 
perfect, an attribute, say Attrj,, should therefore be regarded 
helpful in determining the attributes of future objects as long 
as those attributes are dependent on it probabilistically. 

To decide if the ith attribute of an object in a sequence 
is dependent on the jth attribute Attr j ,  of the object at T 

positions earlier, the chi-square test can be employed. A two- 
dimensional contingency table (Table I )  of I rows and J 
columns (I and J being the total number of values taken on by 
the ith and the jth attributes, respectively) can be constructed. 

Let Olk be the total number of objects in S whose ith 
attribute, Attri(P+7),  takes on the value vi, and are preceded 
at T positions earlier by objects that have the characteristic 
ujk .  Let elk be the expected number of such objects. Under 
the assumption that Attr;(,+,) and Attr j ,  are independent, 
e l k  = olU O u k / h f ’ ,  where MI = Olk is less 
than or equal to M (the total number of objects in the sequence 
S )  due to the possibility of there being missing values in the 
data. A chi-square statistic can then be defined as: 

J I 

MI. (1) 

Whether or not the difference between what is observed 
and what is expected could have arisen by chance can be 
determined by comparing the observed chi-square statistic X 2  
with the critical chi-square x2d,a ,  where d = ( I -  1)(J - 1) is 
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TABLE I1 
A 3 X 3 CONTINGENCY TABLE FOR NUMBER 

OF WINDOWS AND NUMBER OF WHEELS 

TABLE I 
A TWO-DIMENSIONAL CONTINGENCY TABLE WITH I Rows AND J COLUMNS 

II Attrj, 
NUMBER OF WHEELS ... 

- - 
... 

... k (4.17) (12.52) 

TOTAL 

22 

Two 

3 

(5.31) 

... 

... 
One 

NUMBER 

OF Two 

WINDOWS 

Three 

4 

(5.79) 

24 I l9 
(4.55) I (13.66) 

7 

(2.90) (2.28) 3 1  (6.83) 2 

12 ... 

... 
__ 

- 
... 

... 

TOTAL 14 58 

ith attribute of an object in a sequence is dependent on that 
of the jth attribute of the object at T positions earlier. For 
instance, even though we know, by a significant chi-square 
test, that the number of wheels of a locomotive is important 
in determining the number of windows of the next locomotive 
in the sequence, we are unable to draw any conclusion as 
to whether a given locomotive with four wheels should be 
followed by one with three windows or not. In view of the 
importance of such information - especially when both the ith 
and the jth attribute take on a large number of different values 
- we propose a method to evaluate if a specific value, vz l ,  of 
the ith attribute of an object is statistically dependent on a 
value of the jth attribute, uJk ,  of the object 7 positions earlier. 

Before we describe the method, let us define a relevant 
value for the prediction process to be an attribute value that 
is important for determining a certain characteristic of some 
objects later in a sequence. As an illustration, let us again 
consider the sequence of locomotives. By taking a close look 
at Fig. 1, it is not difficult to see that a relatively large 
number of locomotives that have four wheels are followed 
immediately by those that have two windows. For this reason, 
if a locomotive has four wheels, then the likelihood of its 
being followed by a locomotive with two windows is greater 
than that of one or three windows. Hence, the value 'Four' of 
the attribute NUMBER OF WHEELS can be considered as a 
relevant value for prediction. It provides helpful information 
for determining the number of windows of the locomotive in 
the next position. 

By a similar argument, the lack of a medium-length funnel 
can also be considered as a relevant value for the prediction 
process. This is because, when compared to those with long 
and short funnels, relatively few of the locomotives that have 
medium-length funnels are followed two positions later by 

o+k Totals 

the degrees of freedom and a, usually taken to be 0.05 or 0.01, 
is the significance level ((1 - a)% is the confidence level). If 
X 2  is greater than the critical value, there is enough evidence 
to conclude that Att>(P+T)  is dependent on Attr,,; otherwise, 
if x 2  is less than x d + ,  one cannot conclude this [29]. 

As an illustration of the chi-square test, let us consider the 
problem of predicting the characteristics of locomotives (Fig. 
1). To determine if the attribute NUMBER OF WHEELS of a 
locomotive is important for predicting the attribute NUMBER 
OF WINDOWS of the next locomotive, a contingency table 
with three rows (since a locomotive can only have one, two, 
or three windows) and three columns (since a locomotive can 
only have two, three, or four wheels) can be constructed (Table 
11). Based on (2) above, the value of the chi-square statistic, 
X 2 ,  is 17.82. 

Since X 2  = 17.82 is greater than the critical chi-square 
values x24,0,05 = 9.49 and x24,0.01 = 13.28, the chi-square 
test is significant at both the 95% and 99% levels. This 
suggests that the attribute NUMBER OF WINDOWS of a 
locomotive is dependent on that of the attribute NUMBER OF 
WHEELS of the previous one, and we can, therefore, conclude 
that the latter is important in determining the former. 

It should be noted, however, that even though a significant 
overall chi-square test allows us to conclude that an attribute, 
say Attr;( ,+,) ,  is dependent on another one, say Attr,,, it 
provides no information as to how the observed values of the 
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a locomotive that has two windows. Thus, whether a loco- 
motive has four wheels and whether it has a medium funnel 
provides important information about what characteristics the 
locomotives one or two positions later in the sequence should 
possess. 

The identification of relevant values for prediction is easy in 
a deterministic learning environment. If an attribute value, say 
v J k ,  is perfectly correlated with another, v,, , at a position lag of 
T ,  in the sense that an object characterized by w3, is always fol- 
lowed at T positions later by objects characterized by v,, , then 
wJ, can be considered a relevant value for prediction. However, 
as illustrated in our example, the correlation between two 
attribute values is rarely perfect in the presence of uncertainty. 
This means that partial, imperfect, yet genuine correlations 
have to be considered when constructing prediction rules. In 
other words, as long as the probability for an object that is 
characterized by the value v,, given that it is preceded by an 
object that is characterized by an attribute value, say vJh (i.e., 
Pr(Attr,(,+,) = vZ1 1 Attr,, = w J k ) ) .  is it significantly 
different from the probability that an object in the sequence 
has the characteristic, v,, (i.e., Pr(Attr,(,+,) = v,,)), then vJk 
can be considered as a relevant value of the prediction process. 
How great the difference between Pr(Attr,(,+,) = v,, I 
Attr,, = v,,) and Pr(Attr,(,+,) = vu,,) should be for them 
to be considered significantly different may be objectively 
evaluated based on the fact that if they are significantly 
different, then the difference between the number of objects in 
the sequence that are characterized by v,[ and are preceded by 
objects that are characterized by vJ, &e., 0 , k )  should deviate 
significantly from the number of those that are expected (i.e., 
e , k ) ,  to have the characteristic, vJ,, under the assumption that 
the attribute Attr,(,+,) is independent of AttrJp. 

Since, by simply determining the absolute difference, I 
Opk - e p k  1, we are not provided with any information on the 
relative degree of the discrepancy, it is necessary to standardize 
such a difference in some way so as to avoid the influence of 
the marginal totals. Haberman [16] recommended scaling the 
difference by computing the standardized residuals: 

The standardized residuals have the property that z l k2  
are distributed asymptotically as chi-square with ( I -  1)( J -  1) 
degrees of freedom. Also, since z lk  is the square root of the 
X2 variable, it has an approximate normal distribution with a 
mean of approximately zero and a variance of approximately 
one. Therefore, if the absolute value of Zlk exceeds 1.96, it 
would be considered significant at a = 0.05 by conventional 
criteria. We can then conclude that the probability for an object 
to have the characteristic vi,, given that it is preceded, at T 

positions earlier, by an object with the characteristic, u J k ,  is 
sign+cantly different from the probability for an object to have 
the characteristic vi,. In other words, wJk is a relevant value for 
the prediction process. If an object in the sequence is observed 
to possess such a characteristic, it is likely that the object at 
T positions later in the sequence should be characterized by 
the value vii. 

A disadvantage with the use of the standardized residuals is 
that their approximation to normal distribution is only rough if 
the asymptotic variance for each z l k  is not close enough to 1 
[13]. With extra computational cost, one may perform a more 
precise analysis by using the adjusted residual [ 161 defined as: 

(3) 
z l k  

d l k  = - 6' 
where v l k  is the maximum likelihood estimate of the variance 

of Z l k ,  and is given by: 

(4) 

where 01+ is the total number of objects in the sequence that 
possess the characteristic vi, (sum of the lth row in Table I), 
and o+k is the total number of objects in the sequence that 
have the characteristic vi, (sum of the kth column in Table I). 
An adjusted residual, d l k ,  provides a better approximation to a 
standard normal variable than does the standardized residual, 
z l k ,  even if the variance of z l k  differs substantially from 1 .  

The analysis of the adjusted residuals can be applied in 
the same way as with the standardized residuals. Hence, to 
know which specific values of the ith attribute of an object are 
genuinely dependent on that of the values of the jth attribute 
of the object at 7 positions earlier, one could first search for 
unusually large residuals by comparing the absolute value of 
the adjusted residuals, d l k , l  = 1 , 2 , .  . . , I ,  k = 1 , 2 , .  . . , J 
with, 1.96, the 95th percentile of the normal distribution (or 
2.35, the 99th percentile, etc. for a greater confidence level). 
If the absolute value of an adjusted residual, say d l k ,  is larger 
than 1.96, we can conclude that the discrepancy between Olk 
and e l k  (i.e., between Pr(Attri(,+.,) = vi, I Attrj, = vj,) 
and Pr(Attr;(,+,) = vu;,)) is significantly different, and 
therefore wjk is important for predicting the value of the ith 
attribute of the object at T positions later in the sequence. 

By noting the sign of the residuals, we can also tell whether 
it is the presence or the absence of wj, that is relevant for the 
prediction process. A d l k  that is greater than +1.96 (the 95 
percentile of the standard normal distribution) indicates that 
the presence of v.jk is relevant for predicting the ith attribute 
of the object at T positions later. In other words, given that an 
object is characterized by v jh ,  it is more likely for an object 
to have the value vi, at T positions later than for it to have 
other values. If d l k  is smaller than -1.96, it tells us that the 
absence of vjk is relevant for prediction in the sense that it is 
more unlikely for an object characterized by v jh  to be followed 
at T positions later in the sequence by an object that has the 
value vi,. 

Values of Attrj, that show no correlation with any value 
of A t t ~ ~ ( ~ + , )  yield no information about how an object 
at T positions later in a sequence should be characterized. 
Such values are it irrelevant for the prediction process. Their 
presence introduces noise to the data and could therefore lead 
to the construction of inaccurate prediction rules. Hence they 
are disregarded in further analysis. 

As an illustration of the above procedure for identifying 
relevant values for prediction, let us again consider the loco- 
motive problem. As shown above, the result of the chi-square 
test indicates that the attribute NUMBER OF WINDOWS 
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TABLE I11 
THE ADJUSTED RESIDUALS FOR NUMBER OF WINDOWS AND NUMBER OF WHEELS 

Two 

NUMBER 

OF 

WINDOWS Three 

Four 

a locomotive is depend 

NUMBER OF WHEELS 

Two 

-1.00 

0.69 

-1.46 

-0.75 

0.67 

-1.12 

2.41 

0.78 

3.11 

Three 

1.38 

0.71 

1.95 

-1.67 

0.69 

-2.42 

0.48 

0.80 

0.60 

1 on the attribut 

Four 

-0.15 

0.52 

-0.28 

1.45 

0.50 

2.88 

- 1.85 

0.59 

-3.16 

NUMBER OF 
WHEELS of the preceding locomotive. However, based on 
this test alone, we do not know if a particular locomotive 
should have a certain number of windows given that the one 
preceding it has a certain number of wheels. To acquire this 
information, the adjusted residuals given in Table I11 can be 
investigated. 

By comparing them with the 5% standard normal deviate, 
1.96, we observe that d 2 2 ,  d23 ,  d31 and d33 are significant. 
In fact, almost 80% of the total chi-square (X2 = 17.82), is 
concentrated at these four cells; the other cells contribute very 
little. Even though one cannot conclusively state that the values 
‘Three’ and ‘Four’ of the attribute NUMBER OF WHEELS 
are important for determining if the attribute NUMBER OF 
WINDOWS in the next locomotive has the value ‘Two’, and 
the values ‘Two’ and ‘Four’ of NUMBER OF WHEELS are 
important for determining if the NUMBER OF WINDOWS 
of the next locomotive has the values ‘Three’, yet there are 
obvious reasons for such premises. 

Also, from the signs of the deviates, it can be concluded 
that the presence of the values ‘Four’ and ‘Two’ suggests 
that it is likely for the NUMBER OF WINDOWS of the next 

locomotive to have the values ‘Two’ and ‘Three’ ( d 2 3  and d31 

are positive) respectively, whereas the presence of the values 
‘Three’ and ‘Four’ suggests that the next locomotive should 
not have the values ‘Two’ and ‘Three’ respectively (d22  and 
d33 are negative). 

In other words, a locomotive with four wheels is likely to be 
followed by one with two windows, while a locomotive with 
two wheels is likely to be followed by one with three windows. 
On the other hand, a locomotive with three wheels is unlikely 
to be followed by one with two windows, and a locomotive 
with four wheels is unlikely to be followed by one with three 
windows. Since the absolute values of dlk,  k = 1 , 2 , 3  are 
all less than 1.96, then whether or not a locomotive should 
have one window cannot be determined based on the number 
of wheels of the preceding locomotive. That is, the attribute 
NUMBER OF WHEELS does not provide much information 
concerning whether a locomotive should have one window. 

B. Construction of Prediction Rules Based 
on Detected Pattems 

Since relevant attribute values are important in determining 
the characteristics of objects later in a sequence, it is necessary 
to ensure that they are utilized in the construction of prediction 
rules. A simple way to do this is to represent each detected 
dependence relation between two attribute values by a rule of 
the following form: 

If (condition) then (conclusion) with certainty W. 

The condition part of the rule specifies the characteristic that 
an object should possess so that the object at a certain position 
later in the sequence will take on the attribute value predicted 
by the conclusion part. In case of the PP problem, since such 
a prediction cannot usually be made with complete certainty, 
the amount of certainty involved has to be reflected by the 
weight W associated with the rule. 

As an illustration, suppose that the attribute value vi, is 
found to be dependent on wj, as described in the previous 
section. The relationship can be represented as: 

If Attrj, of an object is wj, then it is with certainty 
W that Attri(,+,) of an object located at 7 positions 
later in the sequence has the value vi,, 

where W = W(Attri(,+,) = w;,/Att~;(~+,) # w;, I 
Attrjp = wj,) measures the amount of positive or negative 
evidence provided by wj, supporting or refuting the object at 
7 positions later to have the characteristic, vi,. 

Unlike some ad hoc approaches that attempt to mimic some 
aspects of human reasoning, the derivation of W is based 
on an information theoretic measure, known as the mutual 
information, defined between wj, and w;, as [25], [341: 

I(Attr;(,+,) = vi, : Attrj, = wj,) 
Pr(Attrqp+,) = wi, 1 Attrj, = 3 k  

= log u .  ) .  ( 5 )  
Pr(Attri(p+,) = vi, ) 

so that I(Attri(,+,) = w;, : Attrj, = wj,) is positive 
if and only if Pr(Attr;(,+,) = wi, I Attrj, = wj,) > 
Pr(Attr;(,+,) = vi,) otherwise it is either negative or has 
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W(NUMBER OF WINDOWS = Two/NUMBER OF WINDOWS # TWO 
I NUMBER OF WHEELS = Four) 

- 

= 0.94. 

Pr(NUMBER OF WHEELS = Four I NUMBER OF WINDOWS = Two) 
log Pr(NUMBER OF WHEELS = Four I NUMBER OF WINDOWS # Two) 

- 

a value 0. I(Attri(,+,) = vi,  : Attrj, = vj,) measures, 
intuitively, the increase (if positive) or decrease (if negative) 
in certainty if the ith attribute of an object is predicted to 
take on the value vi, given that the object at 7 positions 
earlier possesses the characteristic, v jk .  Based on the mutual 
information measure, the weight of evidence for or against a 
certain prediction of the attribute values of future objects can 
be assessed quantitatively as follows. 

Suppose that wi, of Attr;(,+,) is dependent on vjk  of 
Attrj,. Then the weight of evidence provided by vj ,  in favor 
of the ith attribute of the object at T positions later in the 
sequence having the value vi, as opposed to it having some 
other value can be defined as [25]:  

W(Attri(,+,) = v;,/Attr;(,+,) # vi, I Attrj, = vj,) 
- - I(Attr;(,+,) = v;, : Attrj, = v j k )  

- I(Attr;(,+,) # w;, : Attrj, = ~ j , ) .  (6) 

In other words, the weight of evidence may be interpreted 
as a measure of the difference in the gain of information when 
the ith attribute of an object takes on the value vi, and when it 
takes on other values, given that the object that is 7 positions 
in front has the characteristic wj,. The weight of evidence 
is positive if vj ,  provides positive evidence supporting the 
ith attribute of the object at T positions later in the sequence 
having the value v;, ; otherwise, it is negative. It must be noted 
that W can also be expressed as: 

W(Attri(p+,) = vi,/Attri(p+T) # vi, I Attrjp = ~ j , )  

= I(Attri(,+,) = Y;, : Attrj, = ~ j , )  

- I(Attri(,+,) # v;, : Attrj, = ~ j , )  

= log 

- log 

= log 

- log 

Pr(Attr;(,+,) = ~ i ,  I Attrj, = v j k )  

Pr(Attr;(p+T) = 
Pr(Attr;(,+,) # vi, I Attrjp = v j k )  

Pr(Attr;(,+,) # vi, ) 
Pr(Attrj, = vjk I Attr;(,+,) = vi,) 

Pr(Attrj, = ~ j , )  

Pr(Attrjp = ~ j ,  I Attri(,+,) # vi,) 

Pr(Attrjp = v j k )  

The prediction rules that are constructed by the above 
procedure describe the object-generating process probabilis- 
tically. As an illustration of the rule-construction procedure, 
let us return to the problem of predicting locomotives. Since 

the value ‘Four’ of the attribute NUMBER OF WHEELS is 
correlated with the value ‘Two’ of the attribute NUMBER OF 
WINDOWS for the next locomotive, the weight of evidence 
provided by the former in favour of the latter as opposed to 
other values is (see above): 
In other words, the following rule can be constructed: 

If a locomotive has four wheels then it is with certainty 
0.94 that the locomotive located at one position later in 
the sequence has two windows. 

Based on the other relevant values, all the rules can be 
constructed. They are: 

If a locomotive has four wheels then it is with certainty 
0.94 that the locomotive located at one position later in 
the sequence has two windows. 
If a locomotive has three wheels then it is with certainty 
-2.82 that the locomotive located at one position later 
in the sequence has two windows. 
If a locomotive has two wheels then it is with certainty 
1.94 that the locomotive located at one position later in 
the sequence has three windows. 
If a locomotive has four wheels then it is with certainty 
-2.02 that the locomotive located at one position later 
in the sequence has three windows. 
If a locomotive has four wheels then it is with certainty 
0.91 that the locomotive located at two position later in 
the sequence has three windows. 
If a locomotive has a medium-length funnel then it is 
with certainty 1.25 that the locomotive located at two 
position later in the sequence has one window. 
If a locomotive has a medium-length funnel then it is 
with certainty -1.44 that the locomotive located at two 
position later in the sequence has two windows. 
If a locomotive has two stripes then it is with certainty 
1.03 that the locomotive located at one position later in 
the sequence has one window. 
If a locomotive has two stripes then it is with certainty 
-1.01 that the locomotive located at one position later 
in the sequence has two windows. 

10) If a locomotive has one window then it is with certainty 
-1.38 that the locomotive located at one position later 
in the sequence has one window. 

11) If a locomotive has one window then it is with certainty 
1.20 that the locomotive located at one position later 
in the sequence has two windows. 

12) If a locomotive has two windows then it is with 
certainty -1.42 that the locomotive located at one 
position later in the sequence has two windows. 
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It must be noted that a negative weight of evidence, for 
example, in Rule 2 above implies that if a locomotive has 
three wheels, then there is negative evidence against the next 
locomotive having two windows. In other words, it is more 
likely for such a locomotive to have one or three windows 
than two. 

C. Prediction of Future Objects 
Given a set of prediction rules which were constructed based 

on the detected patterns inherent in a sequence of objects, the 
characteristics of a future object may be predicted based on 
them. To illustrate how such predictions can be made, let us 
suppose, once again, that we are given a sequence S of M 
objects, objl , .  . . , ob jM,  and suppose that we are to predict 
the value of the ith attribute A t t r i ( ~ + h )  of the object objM+, 
which is h positions behind the most recently observed one 
in S,  obj,. To determine if the value of At tr i (~+h)  is 
dependent on the objects in S ,  there is a need to know which 
attributes of which objects may affect its value. Assuming 
that the objects are generated probabilistically in such a way 
that the characteristics of an object at a certain position 
depend solely on that of a maximum of L objects before 
it, the prediction process begins by searching through the 
space of prediction rules to determine how the characteristics 
of o b j M ,  ~ b j ~ - ~ ,  . . . , obj(,-,)+, may affect the value of 

This search process proceeds by matching the attribute val- 
uesvaZj,(wherej= 1 , 2  ,..., n a n d p = M , M - 1 ,  ..., ( M -  
L )  + l), of the objects objM,objM - 1 ,..., ~ b j ( ~ - ~ ) + ~ ,  
against the subset of prediction rules whose conclusion parts 
predict what values the ith attribute of an object at h, h + 
1,. . . , ( h  + L )  - 1 positions later will take on. An attribute 
value that satisfies the condition part of a rule in such a subset, 
therefore, affects the value of the ith attribute of the object 
at M + h. Hence, this value provides a certain amount of 
evidence, reflected by the weight of the rule, supporting or 
refuting the ith attribute to take on the value predicted by the 
conclusion part. 

In the presence of uncertainty, it is possible for the ith 
attribute to be predicted to take on several different values 
based on different attributes of different objects in S. Suppose 
in our problem that we are to predict the number of windows 

Attr;(p+,) of ObjM+h.  

that the locomotive at position 60 will take on based on the 
last two at positions 58 and 59. These two locomotives have 
characteristics of a medium-length funnel, one stripe, three 
wheels, and one window and a long funnel, two stripes, four 
wheels, and one window, respectively. 

Since the locomotive at position 58 has a medium-length 
funnel, the locomotive at position 60 should have one 
window according to Rule 6. 
Since the locomotive at position 58 has a medium-length 
funnel, the locomotive at position 60 should not have two 
windows according to Rule 7. 
Since the locomotive at position 59 has two stripes, 
the locomotive at position 60 should have one window 
according to Rule 8. 
Since the locomotive at position 59 has two stripes, the 
locomotive at position 60 should not have two windows 
according to Rule 9. 
Since the locomotive at position 59 has four wheels, 
the locomotive at position 60 should have two windows 
according to Rule 1. 
Since the locomotive at position 59 has four wheels, the 
locomotive at position 60 should not have three windows 
according to Rule 4. 
Since the locomotive at position 59 has one window, the 
locomotive at position 60 should not have one window 
according to Rule 10. 
Since the locomotive at position 59 has one window, 
the locomotive at position 60 should have two windows 
according to Rule 11. 

In summary, there is, therefore, both positive and negative 
evidence for the locomotive at position 60 to have one or two 
windows. 

In order to decide what specific value At tr i (M+h)  is most 
likely to take on, it is noted that the attribute values of 
the objects o b j M ,  ~ b j ~ - ~ ,  . . . , that match the 
prediction rules can be considered as providing some evidence 
for or against A t t ~ ~ ( ~ + h )  to have a certain value. For this 
reason, such a decision can be made by combining the various 
items of evidence. 

To quantitatively estimate and combine the evidence so that 
they can be compared, a measure of evidence is proposed here. 
It has the property that its value increases with the number and 
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(1 1) 

strength of the positive items of evidence supporting a specific 
value of Attri(M+h), and decreases with the number and the 
strength of the negative items of evidence refuting such a 
value. This measure, known also as the weight of evidence 
measure measures the evidence, provided by the attribute 
values vaZjp, j = 1 , 2 , .  . . , n and p = M, M - 1,. . . , (M - 
L)+1 of the objects ob jM,  ~ b j ~ - ~ ,  . . . , ~ b j ( ~ - , ) + ~ ,  in favor 
of A t t r i ( M + h )  taking on a certain value. It is defined as (see 
(8) on the previous page): 

Suppose that, of all the characteristics of the objects, 
~ b j ~ , o b j ~ - ~ ,  . . . , ~ b j ( ~ - ~ ) + ~ ,  only m of them, 

1 , .  . . , n ; p  = M , M  - 1 ,... , ( M  - L) + l}, are found 
to match one or more prediction rules. Then the weight of 
evidence can be simplified into [5]: 

WUl[l], . . . ,"UZ[j], . . . , WUl[,], "UZ[ j ]  E {"UZjp 1 j = 

If there is no a priori knowledge concerning the interrelation 
of the attribute values in the problem domain, then the 
weight of evidence provided by the attribute values of 
ob jM,  ~ b j ~ - ~ , .  . . , obj(,-,)+, in favor of Attri(M+h) 
taking the value W U Z ~ ( ~ + ~ )  as opposed to its taking other 
values is equal to the sum of the weights of evidence 
provided by each individual attribute value of the objects 
ob jM,  ~ b j ~ - ~ ,  ..., obj(,-,)+, that is relevant for the 
prediction task. For this reason, we can write [5]: 

Hence, intuitively, the total amount of evidence support- 
ing or refuting A t t r i ( M + h )  to take on the value v a Z i ( ~ + h )  
is equal to the sum of the individual pieces of evidence 
provided by each relevant attribute values of the objects 
ob jM,  ~ b j ~ - ~ , .  . . , obj(,-,)+, for or against such a value. 

In brief, the strategy for predicting a certain characteristic 
of a future object based on a sequence of M objects can 
be summarized as follows. To predict the ith attribute of 
an object ~ b j ( ~ + ~ )  based on the attributes of the L most 
recently observed ones, ob jM,  obj,-, , . . . , ~ b j ( ~ - ~ ) + ~ ,  
the set of prediction rules is searched to determine which 
characteristics of these L objects affect the value of the 
ith attribute, A t t r i ( M + h )  of obj(,+,). This search process 
proceeds by matching each attribute value of these objects 

against the rules whose condition parts predict an object to 
take on a certain value of the ith attribute at h, h + 1, . . . , ( h  + 
L) - 1 positions later. Therefore, if an attribute value of 
one of the L objects has satisfied the condition part of a 
rule, then it affects the value of the ith attribute of the 
object ~ b j ( ~ + ~ )  at a later position specified by the rule. The 
attribute value can be considered to provide some evidence 
for or against Attri(M+h) taking on the value predicted by 
the conclusion part of it. The strength of this evidence is 
given by the weight of the rules. Since the attributes of 
the objects o b j M ,  ~ b j ~ - ~ ,  . . . , obj(,-,)+, may or may not 
provide evidence, and since even those that do may support 
different values, these evidences are quantitatively measured 
and combined for comparison in order to find the most 
probable value that A t t ~ ~ ( ~ + ~ )  should take on. Based on the 
weight of evidence measure, A t t r i ( M + h )  is predicted to take 
on the value vi,, if (see (11) above) 
where I/(<= I) denotes the number of values of the ith 
attribute that are dependent on the attributes of the L most 
recent objects in the sequence S. It should be noted that 
it is possible for two different plausible values to have the 
same greatest weight of evidence. In this case, there may be 
more than one plausible value that A t t r i ( M + h )  may take on. 
Furthermore, if there is no evidence for or against any specific 
value of the ith attribute, prediction will be refrained. Instead 
making a random guess, A t t r i ( M + h )  can be given the value 
which the majority of the objects in the sequence have. If it 
happens that there is no relevant value for determining the 
future value of the ith attribute of ~ b j ( ~ + ~ ) ,  then either the 
generation of the sequence is completely nondeterministic, or 
there are insufficient generated objects for any prediction to 
be made. 

As an illustration of the above procedure for determining 
the attribute of a future object, suppose we are interested 
in predicting the number of windows that the locomotive at 
position 60 may have. 

Since the locomotive at position 58 have a medium- 
length funnel, the positive evidence for the locomotive 
at position 60 to have one window is 1.25 according to 
Rule 6; 
Since the locomotive at position 58 has a medium-length 
funnel, the negative evidence the locomotive at position 
60 to have two windows is -1.44 according to Rule 7; 
Since the locomotive at position 59 has two stripes, the 
positive evidence for the locomotive at position 60 to 
have one windows is 1.03 according to Rule 8; 
Since the locomotive at position 59 has two stripes, the 
negative evidence against the locomotive at position 60 
to have two windows is -1.01 according to Rule 9; 
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W(NUMBER OF WINDOWS = One/NUMBER OF WINDOWS # One 
I medium-length funnel, one stripes, three wheels, one window, 

long funnel, two stripes, four wheels , one window) 
= W(NUMBER OF WINDOWS = One/NUMBER OF WINDOWS # One 
I medium-length funnel , two stripes , one window) 
= 0.90. 

Similarly: 

W(NUMBER OF WINDOWS = Two/NUMBER OF WINDOWS # TWO 
1 medium-length funnel , one stripes , three wheels , one window , , 

long funnel , two stripes , four wheels, one window) 
= W(NUMEBR OF WINDOWS = Two/NUMBER OF WINDOWS 
# Two 1 medium-length funnel , two stripes , four wheels , one window) 
= -0.31. 

W(NUMBER OF WINDOWS = Three/NUMBER OF WINDOWS # Three 
I medium-length funnel , one stripes , three wheels , one window , 

long funnel , two stripes, four wheels , one window) 
= W(NUMEBR OF WINDOWS = Three/NUMBER OF WINDOWS # Three 
1 four wheels) 
= -2.02. 

Since the locomotive at position 59 has four wheels, the 
positive evidence for the locomotive at position 60 to 
have two windows is 0.94 according to Rule 1; 
Since the locomotive at position 59 has four wheels, the 
negative evidence against the locomotive at position 60 
to have three windows is -2.02 according to Rule 4; 
Since the locomotive at position 59 has one window, the 
negative evidence against the locomotive at position 60 
to have one windows is -1.38 according to Rule 10; 
Since the locomotive at position 59 has one window, the 
positive evidence for the locomotive at position 60 to 
have two windows is 1.21 according to Rule 12. 

Based on these rules, it seems that there is both positive and 
negative evidence supporting or refuting locomotive number 
60 to have one or two windows. The weight of evidence for 
or against the attribute NUMBER OF WINDOWS taking on 
different values can be computed as follows (see above): 

Since the weight of evidence for the value ‘One’ as opposed 
to the values ‘Two’ and ‘Three’ is the greatest, we predict, 
therefore, locomotive number 60 to have one window. There 
is negative evidence against its having two or three windows. 

v .  PERFORMANCE EVALUATION 

The proposed inductive learning method for solving the 
PP problem has been implemented in a system called 
OBSERVER-11. This system has been tested with both 
simulated and real-world prediction problems. In this section, 

the results of these tests and how OBSERVER-I1 is able to 
successfully solve them while other systems fail to do so are 
discussed. 

A. An Experiment Involving a Sequence of Movements 

A hypothetical scenario is presented here, which demon- 
strates the capability of the proposed method to discover the 
rules governing the interrelations of the movements of a set 
of objects over a period of time. Suppose four objects 1, 2, 3, 
and 4 are moving around in a bounded area and OBSERVER- 
I1 is taking a snapshot of them at fixed time intervals (Fig. 
2). Suppose also that each of these objects makes one move 
during every time interval. 

In order to simulate the PP problem, the data for this 
experiment is generated stochastically in such a way that: 
1 moves randomly; 2 always follows 1 (at a time lag of 1) 
by moving in the same direction as 1; 3 moves in the same 
direction as 2 about 55% of the time whenever the previous 
move of 2 was to E ,  S ,  or W ,  but if 2 moves to the N ,  then 3 
may move in any direction except N .  4 moves in a direction 
that is opposite to that of 3 whenever 3 moved in the same 
direction as 2; otherwise, it moves either to E or W .  

To detect these probabilistic patterns, it must be noted 
that an observation made at time t can be described by 
four attributes, A t t r j t , j  = 1 , .  . . ,4 corresponding to the 
movements of the four objects, 1, 2, 3 and 4, respectively, 
so that domain(Attrjt) = { E ,  S ,  W, N } .  To determine the 
future position of an object, say 3, we have to know how it 
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TABLE IV 
A 4 x 4 CONTINGENCY TABLE FOR Attrzt AND A t t ~ ~ ( ~ + ~ )  

Attrzt 

E 

11 

(6.49) 

3 

- - 

- 

(5.77) 

S 

5 

(7.18) 

11 

(6.38) 

- - 

- 

W 

3 

- - 

(5.47) - 
2 

(4.86) 

N 

8 

(7.86) 

8 

(6.98) 

- - 

- 

0 1 rOTAL 

27 

24 

19 

2 

4 3 
2 

(4.57) 

2 

(5.05) 

8 

(3.85) 

7 

(5.53) 

3 

(2.17) 

3 

(2.39) 

3 

(1.82) 

0 

(2.62) 

9 . . .  
19 - 21 - 16 23 - 79 t-2 

? 2, respectively, are positive, whereas N of 3 is negatively 
dependent on N of 2. This suggests that the movement of 2 
to E, S ,  or W provides evidence supporting that the next 

t-1 t t + i  movement of 3 will be towards E, S or W respectively; 
whereas the movement of 2 to N implies that there is negative 
evidence against the next movement of 3 to be to N. In 
a similar way, other dependence relationships between the 
movements of different objects at different times are detected, 
and the probabilistic patterns by which the data are generated 
are successfully discovered. 

Based on the detected relationships in the observed move- 
ments of the four objects, a set of prediction rules can be 
constructed. For example: 

If the movement of 2 is towards W then it is with certainty 
1.66 that the next movement of 3 is to W 

Fig. 2. A sequence of snapshots showing the positions of four objects. 

moves around in the enclosed area, and whether the movement 
of any other object, say 2, affects its movement or not. In other 
words, we have to determine if the movement of 3 is genuinely 
dependent on the movement of 2 at a certain time unit earlier. 

By applying the chi-square test, we discover that there is 
a significant dependence relationship between the movements 
of 3 and that of 2 at a time difference of one unit ( X 2 9 , ~ . 9 5 )  

(Table IV). 
However, based on this test alone, how the movement of 3 

is dependent on the last movement of 2 is not completely clear. 
A more effective investigation, as described in the last section, 

given in Table V, to determine which specific movement of 3 
is genuinely dependent on that of 2 at one time unit earlier. 

deviate, 
1.96, we observe that d E E ,  dss, dww, and d" are sig- 
nificant. In fact, about 60% of the total X 2  is concentrated 
at these five cells; the other cells contribute very little. Even 
though one cannot, based on, say d E E ,  conclusively state that 
3 moves to E whenever 2 has made its last move towards E, 
there are obvious reasons for such premises. 

Also, from the signs of the deviates, we can conclude 
that the dependences of E, S ,  W of 3 on E, S, W of 

where 1.66 is the weight of evidence for 3 to move to w as 
opposed to its moving to E ,  S ,  or N ,  provided that the last 
movement of 

of the future movements of the four objects, let us suppose 
that we are to predict the next movement of object 3, given 
the sequence in Fig. 2. 

are 
dependent On the Previous movements Of Other Objects. (In 
this experiment, the maximum lookback is taken to be l . )  
From a search through the set of prediction rules, we find that 
the movement of 3 is independent of the last movement of 
all others with the exception of 2 in the way described above. 
Therefore, to compute the weight of evidence in favour of 3 

is also towards W .  
has to be conducted' we thus the adjusted To illustrate how these rules can be employed for prediction 

By comparing them with the 5% 

To do this, we have to know which movements Of 
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TABLE V 
THE ADJUSTED RESIDUALS FOR A t t w  AND Attr,(,+,) 

CLASS 

E 

S 

w 

N 

3 ~ 

2.50 

-1.15 

0.73 

-1.59 

-1.20 

0.76 

-1.58 

0.57 

0.82 

0.69 

At t ~ 2 t  

.0.81 J 
-1.17 

1.83 

0.72 

2.56 

-1.36 

0.75 

-1.82 

0.39 

0.81 

0.49 

w 

.1.06 

0.73 

-1.46 

- 1.30 

0.75 

-1.74 

2.12 

0.78 

2.72 

0.87 

0.84 

1.04 

N 

0.05 

0.68 

0.07 

0.38 

0.70 

0.54 

0.62 

0.73 

0.85 

-1.62 

0.79 

-2.04 

moving in a particular direction, say W, we compute: 

By a similar procedure, the total weight of evidence in 
favour of 3 moving E, S, and N as opposed to its moving 
in other directions can be determined, and 3 is predicted to 
move to W, which is the direction supported by the strongest 
evidence. The next movements of all the other objects are also 
correctly predicted with the exception of 1: no pattern can be 

1 2 3 4 5 6 

..e F A -  
7 8 9 

P - 6  p - 5  p - 4  

P - 3  p - 2  P - 1  P P + l  

Fig. 3. A sequence of geometric figures. 

detected concerning its movement as it moves independently 
of the others in a completely random manner. It should be 
noted that the movements of objects 2, 3, and 4 are correctly 
predicted even though the relative positions they occupied in 
the 5 x 5 matrix have, in some instances, never been observed 
before. Since this PP problem involves data that are generated 
probabilistically, SPARC and the other programs described in 
Section 2 are not able to solve it. 

B. An Experiment Involving a Sequence of Geometric Figures 
Suppose that the OBSERVER-I1 is given snapshots of an 

ongoing process that generates a sequence of geometric figures 
(Fig. 3) [lo]. Suppose also that each of the figures is described 
by four attributes: SHAPE, NUMBER OF NODES, NODE 
TEXTURE, and ORIENTATION. The problem is to predict 
the characteristics of the figure at p + 1. 

Based on the learning algorithm described in the last section, 
the OBSERVER-I1 is able to discover the patterns underlying 
the sequence of geometric figures. The figures in the sequence 
can be grouped together into subsequences of triplets so that 
the nodes of the figures in each subsequence have textures in 
the order ‘solid black’, ‘blank‘, ‘cross’; and the corresponding 
shapes are always ‘T-junction’, ‘an object with 4 or 8 nodes’, 
‘bar’. The orientation of the T-junction changes by -45 
degrees each time with respect to its last appearance, whereas 
that of the bar changes by +45 degrees in a similar manner. The 
number of nodes of the middle figure in each triplet alternates 
between 4 and 8. 

By detecting these patterns, it is predicted that the figure at 
position p + 1 has 8 blank nodes and that its shape is neither 
a T-junction nor a bar (i.e. there is negative evidence against 
its taking either of these two shapes). Since the shape of the 
figure cannot be determined, its orientation with respect to its 
last appearance is not predicted also. 

It must be noted that the maximum lookback is taken to be 
1 in this experiment. However, all the predictions can still be 
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1 2  3 4  5 p-2 P-1 P P + l  

card is not predicted, due to a lack of evidence to support any 
specific value. 

The results of this experiment show that OBSERVER-I1 is 
able to discover rules that are not immediately obvious to a 
human. It performs better than the SPARC program, which is 
unable to discover the secret rule of this game due to the fact 
that none of the models it considers fit the data [lo]. 

Fig. 4. A sequence of cards (the mainline) in a game of Eleusis. 

made accurately. The reason why this is possible may not be 
immediately obvious to human observers, who would normally 
predict the number of nodes of the figure at p+ 1 by looking at 
those of the figure at position p - 2. OBSERVER-11, however, 
is capable of discovering that the number of nodes of a figure 
can be predicted, with complete certainty, based on the shape 
and orientation of the last figure alone. It discovers that if the 
last figure is a T-junction at +135 degrees, the next figure will 
definitely have 8 nodes. Such a discovery is totally unexpected 
before the experiment. 

The SPARC program has also been tested with this experi- 
ment. However, it is unable to correctly predict the character- 
istics of the next figure, due to its inability to form composite 
models. And as a result, it is not able to find a sequence- 
generating rule in a sequence of objects that involves nested 
periodic structures [ 101. 

C. An Experiment Involving a Sequence of Playing Cards 

Suppose that OBSERVER-I1 is given a layout (the mainline) 
of a game of Eleusis (Fig. 4) [lo]. Suppose also that each 
card of the sequence is described by the attributes: SUIT, 
RANK, COLOR, FACEDNESS, PARITY, PRIMENESS and 
the attributes EL-SUIT, DIFl-RANK where REL-SUIT 
takes on the value of the relation (>, <, =) between the suits 
of two adjacent cards and DIFF-RANK takes on the value of 
the difference in suit modulo 4 between their ranks. (These 
attributes can either be explicitly represented or they can be 
derived by the user providing the system with a definition 
for each of them.) The problem is to find the secret rule that 
governs the layout of the cards, and to predict the next card 
in the sequence. 

Based on the learning algorithm described in the last section, 
OBSERVER-I1 is able to discover the secret rule that states 
that: if the rank of the card is higher than or equal to that of 
the previous one, its suit will also be one suit higher (modulo 
4); otherwise, if the rank of the card is lower than or equal 
to that of the previous one, then its suit will be three suits 
higher (modulo 4). Based on these rules, the next card in the 
sequence is predicted to have a rank lower than that of J, and 
the suit of the card will be ‘club’ since the last suit of the 
last card is a ‘diamond’. As expected, the exact rank of the .. 

D. An Experiment Involving a Sequence of Weather Records 

This experiment is performed on a set of real-life data 
involving the mean temperature of twelve European cities: 
Copenhagen, Edinburgh, Geneva, Stockholm, London, Rome, 
Marseilles, Milan, Paris, Berlin, Vienna, and Oslo. The data are 
taken from [23], and they represent the mean temperature for 
the month of July collected over a period of 175 years (1751- 
1975). In other words, a sequence of 175 weather records, each 
of which is described by a total of 12 attributes, is available. 
OBSERVER-11’s task is to discover if there is any underlying 
pattern in the data, and to forecast future July temperature 
based on the detected patterns. 

Since it is more meaningful, especially in long-term fore- 
casting, for a mean temperature to be predicted to be within 
a certain interval rather than at a certain point, the set of 
possible values that an attribute may take on is divided into a 
few intervals. Instead of finding these intervals arbitrarily, and 
thereby losing information, a procedure based on the maximum 
entropy formalism is employed so that the probability for an 
observed temperature to fall into any interval is approximately 
the same [37]. This procedure allows the temperature scale 
to be divided into different intervals, while at the same time 
it reduces the loss of information to a minimum. By such a 
procedure, the recorded mean temperatures for each city were 
grouped into four intervals, as shown in Table VI. 

By applying the method proposed in this paper, 
OBSERVER-I1 is able to discover how the temperatures 
of the different cities affect each other at different periods of 
time. The discovered hidden regularities in the data are then 
represented by a set of prediction rules, whose performance 
is evaluated by employing some of the available weather 
records for testing. The mean temperature of each of the 12 
cities for 27 years (from 1949 to 1975) is predicted based 
on the weather records of the previous years (the maximum 
lookback is taken to be 6). The performance of the prediction 
rules is then compared to that of random guessing and to 
that of guessing based on the most numerous value in the 
data (i.e., the temperature is predicted to be in the interval 
into which most of the other observations fall). The results 
for the test and how different methods compare with each 
other are shown in Table VII. 

It should be noted that the predictions made by 
OBSERVER-I1 are better than those made by the other 
methods. For the cities of Stockholm, Rome, Milan, Berlin, 
and Oslo, the percentages of accurate predictions are all higher 
than 74%. It must also be noted that the mean temperatures 
for some cities - Geneva, London, and Marseilles - are 
difficult to predict accurately. Their temperatures seem to 
be indenendent of that of other cities considered here. In 
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TABLE VI 
RANGES OF TEMPERATURE (IN CELCIUS) REPRESENTED BY EACH INTERVAL 

Copenhagen 

Edinburgh 

Geneva 

Stockholm 

London 

city Rome 

Marseilles 

Milan 

Paris 

Berlin 

Vienna 

Oslo 

Rates (%) 

Copenhagen 

Edinburgh 

Geneva 

Stockholm 

London 

Rome 

Marseilles 

Milan 

Paris 

Berlin 

Vienna 

Oslo 

1 

12.6-16.0 

12.1-14.0 

15.6-18.3 

12.9-16.0 

14.2-16.0 

20.5-23.6 

19.8-21.8 

18.9-22.9 

15.2-17.4 

5.4- 7.6 

4.3- 8.9 

3.1- 6.0 

Interval Ranges 

2 

16.1-17.2 

14.1-14.6 

18.4-19.2 

16.1-17.0 

16.1-16.7 

23.7-24.4 

21.9-22.6 

23 .O-23.7 

17.5-18.3 

7.7- 8.9 

9.0- 9.8 

6.1- 6.9 

3 

17.3-17.9 

14.7-15.3 

19.3-20.5 

17.1-18.4 

16.8-18.1 

24.5-25.2 

22.7-23.3 

23.8-25.0 

18.4-19.7 

9.0- 9.9 

9.9-10.9 

7.0- 7.9 

TABLE VI1 
COMPARISON OF THREE FORECASTING METHODS 

Random Guess 

:orrect Incorrecl 

25.0 75.0 

25.0 75.0 

25.0 75.0 

25.0 75.0 

25.0 75.0 

25.0 75.0 

25.0 75.0 

25.0 75.0 

25.0 75.0 

25.0 75.0 

25.0 75.0 

25.0 75.0 

Simple Majority 

:orrect Incorrect 

25.9 74.1 

22.2 77.8 

18.5 81.5 

29.6 70.4 

29.6 70.4 

37.0 63.0 

37.0 63.0 

7.4 92.6 

18.5 81.5 

25.9 74.1 

40.7 59.3 

37.0 63.0 

4 

18.0-21.4 

15.4-18.4 

20.6-23.4 

18.5-21.4 

18.2-20.5 

25.3-27.6 

23.4-25.6 

25.1-28.3 

19.8-22.0 

10.0-13.6 

11 .O-14.6 

8.0-12.7 

OBSERVER-I1 

:orrect Incorrect No Prediction 

29.6 66.7 3.7 

59.3 29.6 11.1 

18.5 77.8 3.7 

81.5 14.8 3.7 

22.2 70.4 7.4 

81.5 14.8 3.7 

18.5 63.0 18.5 

88.9 11.1 0.0 

29.6 59.3 11.1 

74.1 22.2 3.7 

25.9 51.9 22.2 

74.1 14.8 11.1 

view of the difficulty in long-term weather forecasting, the 
experimental results are very encouraging. 

VI. CONCLUSION 
Considering that decision-making about the likelihood of 

some future events based on past information plays a crucial 
role in scientific progress as well as in everyday life and 

that there is a growing interest in the development of expert 
systems for prediction tasks in many fields, it is important that 
an efficient strategy be developed to assist with predictions. 
Existing methods are not suitable for dealing with predic- 
tion problems in the presence of uncertainty. For example, 
traditional cognitive model-based approaches can only deal 
with letter- or number-series extrapolation problems and they 
cannot handle noisy data. More recent AI method, such as the 
SPARC program, handles the prediction problem by adopting 
a model-driven learning strategy. The sequence generating 
process, in such case, has to be assumed to fit certain types of 
rule models. Furthermore, the sequence also has to be assumed 
to be transformable, by at least one of several different 
functions, into another. The need for such assumptions makes 
it difficult for SPARC to tolerate noisy data. 

To deal with uncertainty in prediction tasks, we propose 
an inductive learning method in this paper. The proposed 
method is based on a new probabilistic inference technique 
and is thus able to discover pattems in sequences in which 
the characteristics of an object are not completely dependent 
on those preceding it. This method has been implemented 
in the OBSERVER-I1 system and was tested with different 
sets of real and simulated data. The experimental results 
have demonstrated the capability of the system in solving PP 
problems in which other existing prediction systems are not 
designed to. 

In conclusion, OBSERVER-I1 is able to discover the prob- 
abilistic pattems inherent in a sequence of objects and to 
construct, with or without supervision, prediction rules based 
on these patterns. It can be used to solve complex real- 
world problems where predictions have to be made in the 
presence of uncertainty and a probabilistic answer based on the 
previous observations is more appropriate than an exact one. 
OBSERVER-I1 has the capability to discover hidden patterns 
and to explain the behaviour of certain sequence-generating 
processes and causal relationships that a user is not likely to 
be immediately aware of or to fully understand. It represents an 
important step towards the goal of automating the knowledge 
acquisition process in the construction of knowledge-based 
systems for applications involving forecasting of future events. 
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