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Abstract

Periodicy detection in time series data is a challenging problem of great importance in many appli-

cations. Most previous work focused on mining synchronous periodic patterns and did not recognize

misaligned presence of a pattern due to the intervention of random noise. In this paper, we propose a

more flexible model of asynchronous periodic pattern that may be present only within a subsequence

and whose occurrences may be shifted due to disturbance. Two parameters ����� ���	� and ��
� �����

are employed to specify the minimum number of repetitions that is required within each segment of

non-disrupted pattern occurrences and the maximum allowed disturbance between any two successive

valid segments. Upon satisfying these two requirements, the longest valid subsequence of a pattern is

returned. A two phase algorithm is devised to first generate potential periods by distance-based prun-

ing followed by an iterative procedure to derive and validate candidate patterns and locate the longest

valid subsequence. We also show that this algorithm can not only provide linear time complexity with

respect to the length of the sequence but also achieve space efficiency.

Keywords

Asynchronous periodic pattern, Segment-based approach, Partial periodicity

1



1 Introduction

Periodicy detection on time series data is a challenging problem of great importance in many real applica-

tions. Most previous research in this area assumed that the disturbance within a series of repetitions of a

pattern, if any, would not result in the loss of synchronization of subsequent occurrences of the pattern with

previous occurrences [12] [13]. For example, “Joe Smith reads newspaper every morning” is a periodic

pattern. Even though Joe might not read newspaper in the morning occasionally, this disturbance will not

affect the fact that Joe reads newspaper in the morning of the subsequent days. In other words, disturbance

is allowed only in terms of “missing occurrences” but not as general as any “insertion of random noise

events”. However, this assumption is often too restrictive since we may fail to detect some interesting

pattern if some of its occurrences is misaligned due to inserted noise events. Consider the application

of inventory replenishment. The history of inventory refill orders can be regarded as a symbol sequence.

Assume that the time between two replenishments of cold medicine is a month normally. The refill order

is filed at the beginning of each month before a major outbreak of flu which in turn causes an additional

refill at the 3rd week. Afterwards, even though the replenishment frequency is back to once each month,

the refill time shifts to the 3rd week of a month (not the beginning of the month any longer). Therefore, it

would be desirable if the pattern can still be recognized when the disturbance is within some reasonable

threshold.

In addition, the system behavior may change over time. Some pattern may not be present all the time

(but rather within some time interval). Therefore, in this paper we aim at mining periodic patterns that

are significant within a subsequence of symbols which may contain disturbance of length up to a certain

threshold. Two parameters, namely min rep and max dis, are employed to qualify valid patterns and the

symbol subsequence containing it, where this subsequence in turn can be viewed as a list of valid seg-

ments of perfect repetitions interleaved by disturbance. Each valid segment is required to be of at least

����� ���	� contiguous repetitions of the pattern and the length of each piece of disturbance is allowed only

up to ��
� ����� . The intuition behind this is that a pattern needs to repeat itself at least a certain number

of times to demonstrate its significance and periodicy. On the other hand, the disturbance between two

valid segments has to be within some reasonable bound. Otherwise, it would be more appropriate to treat
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such disturbance as a signal of “change of system behavior” instead of random noise injected into some

persistent behavior. The parameter ��
� � � � acts as the boundary to separate these two phenomena. Ob-

viously, the appropriate values of these two parameters are application dependent and need to be specified

by the user. For patterns satisfying these two requirements, our model will return the subsequence with

the maximum overall repetitions. Note that, due to the presence of disturbance, some subsequent valid

segment may not be well synchronized with the previous ones. (Some position shifting occurs.) This in

turn would impose a great challenge in the mining process.

Similar to [13], we allow a pattern to be partially filled to enable a more flexible model. For instance,

(cold medi, *, *, *) is a partial monthly pattern showing that the cold medicine is reordered on the first

week of each month while the replenishment orders in the other three weeks do not have strong regularity.

However, since we also allow the shifted occurrence of a valid segment, this flexible model poses a difficult

problem to be solved. For a give pattern
�

, its associated valid segments may overlap. In order to find

the valid subsequence with the most repetitions for
�

, we have to decide which valid segment and more

specifically which portion of a valid segment should be selected. While it is relatively easy to find the set

of valid segments for a given pattern, substantial difficulties lie on how to assemble these valid segments

to form the longest valid subsequence. As shown in Figure 1, with ����� ���	����� , ��� , �
	 , and ��� are three

valid segments of the pattern
� �� � ����������� . If we set ��
� � ������� , then ��� is the longest subsequence

before �
� is considered, which in turn makes ��	 the longest one. If we only look at the symbol sequence

up to position � without looking ahead in the sequence, it is very difficult to determine whether we should

switch to �
	 to become ��� or continue on ��� .
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Figure 1: Example of Symbol Sequence

3



This indicates that we may need to track multiple ongoing subsequences simultaneously. Since the

number of different assemblages (of valid segments) grows exponentially with increasing period length,

the process to mine the longest subsequence becomes a daunting task (even for a very simple pattern such

as  � ����������� ). To solve this problem, for a given pattern, an efficient algorithm is developed to identify

subsequences that may be extended to become the longest one and organize them in such a way that the

longest valid subsequence can be identified by a single scan of the input sequence and at any time only a

small portion of all extendible subsequences needs to be examined.

Another innovation of our mining algorithm is that it can discover all periodic patterns regardless of

the period length. Most previous research in this area focused on patterns for some pre-specified period

length [12] [13] [21] or some pre-defined calendar [24]. Unfortunately, in practice, the period is not

always available a priori (It is also part of what we want to mine out from the data). The stock of different

merchandises may be replenished at different frequencies (which may be unknown ahead of time � and

may also varies from time to time). A period may span over thousands of symbols in a long time series

data or just a few symbols. We first introduce a distance-based pruning mechanism to discover all possible

periods and the set of symbols that are likely to appear in some pattern of each possible period. In order to

find the longest valid subsequence for all possible patterns, we employ a level-wise approach. The Apriori

property also holds on patterns of the same period. That is, a valid segment of a pattern is also a valid

segment of any pattern with fewer symbols specified in the pattern. For example, a valid segment for

 � ��� � 	 ����� will also be one for  � � ��������� . Then, for each likely period, all valid patterns with their longest

supporting subsequences can be mined via an iterative process.

In summary, we claim the following contributions in this paper.

� A pattern can be partially specified, e.g.,  � ��������� .

� A more flexible model of asynchronous periodic patterns is proposed to allow mining of all patterns

– whose periods can cover a wide range and are not known a priori;

– that are present within only a subsequence;

�

The replenishment order of a merchandise may not be prescheduled but rather be filed whenever the inventory is low.
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– whose occurrences may be misaligned due to the insertion of some random disturbance.

� A two phase algorithm is devised to first generate potential periods by distance-based pruning fol-

lowed by an iterative procedure to derive and validate candidate patterns and locate the longest valid

subsequence containing each pattern.

� A segment-based approach is devised to discover the longest valid subsequence for a given pattern

via a single scan of the input sequence.

� We also analyze the time and space complexity and prove the correctness of the proposed algorithm.

The remainder of this paper is organized as follows. Section 2 gives a brief overview of recent related

research to our problem. The general model is presented in Section 3. Section 4 outlines the three major

steps of our algorithm. The algorithms of distance-based pruning, the singular pattern verification, and the

complex pattern verification are elaborated in Sections 5, 6, 7, respectively. We discuss some limitations

and extensions of our algorithm in Section 8. Section 9 presents experimental results. The conclusion is

drawn in Section 10.

2 Related Work

Discovering sequential patterns was first introduced in [2] and [25]. The input data is a set of sequences,

called data-sequences. Each data-sequence is a list of transactions. Typically there is a transaction time

associated with each transaction. A sequential pattern also consists of transactions, i.e., sets of items. The

problem is to find all sequential patterns with a user-specified minimum support, where the support of a

sequential pattern is the percentage of data-sequences that contain the pattern. The surprising sequential

pattern discovery is proposed in [28]. In this work, the authors search for the patterns whose occurrence is

significantly greater than the expectation. The information gain is used to measure the degree of surprise

(or significance) of a pattern.

Full cyclic pattern was studied in [21]. The input data to [21] is a set of transactions, each of which

consists of a set of items. In addition, each transaction is tagged with an execution time. The goal is to
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find association rules that repeat itself throughout the input data. Han et. al. [13] presented algorithms

for efficiently mining partial periodic patterns by exploring some interesting properties related to partial

periodicity such as the Apriori Property and the max-subpattern hit set property. However, the proposed

solution requires that the predefined period and the synchronous pattern.

In [7], Bettini et. al. proposed an algorithm to discover temporal patterns in time sequences. The

basic components of the algorithm includes timed automata with granularities (TAGs) and a number of

heuristics. The TAGs are for testing whether a specific temporal pattern, called a candidate complex

symbol type, appears frequently in a time sequence. In addition, heuristics are used to reduce the number

of candidate symbol types. These heuristics exploit the information provided by explicit and implicit

temporal constraints with granularity in the given symbol structure.

The inclusion of a user defined calendar is studied in [24]. A user explicitly defines a calendar and

interesting patterns are discovered based on the calendar. For example, if a user defines temporal subse-

quence to start on the days when the US government announces the unemployment rate as this calendar

and the calendar is applied to the stock prices in New York Stock Exchange, then some interesting patterns

can be discovered relating the reaction of stock prices to these announcements.

3 General Model

In this section, we formally define the model that we are investigating in this paper. Let
� ��� � ��� � 	 �����������

be a set of literals and � be a sequence of literals in
�

. We first introduce some notations that would

facilitate the discussion in the remainder of the paper.

Definition 3.1 A pattern with period � is a sequence of � symbols  � ��� � 	 ��������� �
	 � , where � ��� � and the

others are either a symbol in
�

or *, i.e., �� � ��� � ���� � � � � .

Since a pattern can start anywhere in a sequence, we only need to consider patterns that start with a non

“*” symbol. Here, � is introduced to allow partial periodicy. In particular, we use � to denote the “don’t

care” position(s) in a pattern [13]. A pattern
�

is called a � -pattern if exactly � positions in
�

are symbols

from
�

. (The rest of the positions are filled by *.) For example,  � ��� � 	 ����� is a 2-pattern of period 3.
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Definition 3.2 For two patterns
� �  � ��� � 	 ������� � �
	 � and

��� �  � � � � � � 	 ������� � � � 	 � with the same period � ,
���

is a specialization of
�

(i.e.,
�

is a generalization of
���

) iff, for each position � �� � � � � � , either

�  � � � or �  � � is true.

For example, pattern  � � � � 	 ����� is considered as a specialization of  � ����������� and a generalization of

 � ��� � 	 � � ��� .

Definition 3.3 Given a pattern
� �  � ��� � 	 ������� � �
	 � with period � and a sequence of � literals � � �

� ��� � 	 ������� � � 	 , we say that
�

matches � � (or � � supports
�

) iff, for each position � �� � � � � � , either

�  � � or �  � �  is true. � � is also called a match of
�

.

In general, given a sequence of symbols and a pattern
�

, multiple matches of
�

may exist. In Fig-

ure 2(a), ��� , � 	 , ����� , ��� are seven matches of  � ������� � 	 � . We say that two matches of the same period are

overlapped iff they share some common subsequence, and are disjoint otherwise. For instance, � � and

� � are disjoint while � � and � 	 are overlapped and their common subsequence is indicated by the shaded

area in Figure 2(a).

D3

D1

D2

d1 d2 d1 d3 d2 d4 d1 d4 d3d1 d2 d1 d2

D4

d1 d2 d5

D5

d2d4 d1 d5 d3d2d1

D6 D7

d1 d3 d2 d4d1 d2d1 d2 d2

(d) valid subsequence of (d1, *, d2)

(b) segments of (d1, *, d2)

(a) matches of (d1, *, d2)

(c) valid segments of (d1, *, d2)

S1 S2 S3
disturbance

d1 d1 d3d1 d2 d5d4 d2d4 d1 d5 d3d1 d2d1 d2 d2 d1 d3 d2 d1 d4 d2

d1 d1 d4 d3d1 d2 d5 d1 d5 d3d2d1 d4 d2

d1 d1 d1d4 d2d4 d1 d5 d3d1d1 d2 d2 d1 d3 d2 d1 d4 d2 d1 d2d5 d2

valid subsequence

Figure 2: Example of matches and segments of  � ������� � 	 �

Definition 3.4 Given a pattern
�

with period � and a sequence of symbols � , a list of �  �
	�� � disjoint
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matches of
�

in � is called a segment with respect to
�

iff they form a contiguous subsequence of � . �

is referred to as the number of repetitions of this segment.

Segments � 	 , � � , and ��� form a contiguous subsequence as shown in Figure 2(b). Therefore, the

subsequence � � � � 	 � � 	 , � ��� � � � � 	 , � ��� � � � � 	 is a segment with respect to the pattern  � � ����� � 	�� . Note that,

by definition, each match of a pattern
�

itself is also a segment with respect to
�

.

Definition 3.5 A segment � with respect to a pattern
�

is a valid segment iff the number of repetitions of

� (with respect to
�

) is at least the required minimum repetitions (i.e., ��� � � �	� ).

If the value of ��� � � �	� is set to � , then both segments � � and �
� qualify as valid segments as illustrated

by shaded area in Figure 2(c). ��	 is not a valid segment since it only contains one match of  � ������� � 	 � . In

general, given a pattern
�

, any sequence of symbol can be viewed as a list of disjoint valid segments (with

respect to
�

) interleaved by disturbance. For example, the subsequence enclosed in the dashed contour in

Figure 2(c) is treated as disturbance between two valid segments � � and �
� .

Definition 3.6 Given a sequence � and a pattern
�

, a valid subsequence in � is a set of non-overlap

valid segments where the distance between any two successive valid segments does not exceed the pa-

rameter ��
� � � � . The overall number of repetitions of a valid subsequence is equal to the sum of the

repetitions of its valid segments. A valid subsequence with the most overall repetitions of
�

is called its

longest valid subsequence.

Definition 3.7 For a sequence of symbols � , if there exists some valid subsequence with respect to a

pattern, then this pattern is called a valid pattern.

It follows from the definition that any valid segment itself is also a valid subsequence. If we set

��
� � ��� ��� , even though ��� and ��� in Figure 2(c) are individually valid subsequences, there does not

exist a valid subsequence containing both of them due to the violation of the maximum allowed disturbance

between them. In contrast, the subsequence enclosed by dashed line in Figure 2(d) is a valid subsequence

whose overall number of repetitions is 6.
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For a given sequence of literals � , the parameters ����� ���	� and ��
� � � � , and the maximum period

length ������� , we want to find the valid subsequence that has the most overall repetitions for each valid

pattern whose period length does not exceed ������� .

4 Algorithm Overview

In this section, we outline strategies to tackle the problem of mining subsequences with most overall

repetitions for all possible patterns.

1. Distance-based Pruning. For each symbol � , we examine the distance between any two occurrences

of � . Let �
	��� 	 be the number of times when such distance is exactly � . For each period � , the set of

symbols whose ��	��� 	 counters are at least ��� � � �	� are retained for the next step.

2. Single Pattern Verification. For each potential period � and each symbol � that passed the previous

step, a candidate 1-pattern  � ��� � 	���������� � 	 � is formed by assigning � � � � and � 	 � ����� � � 	 � � . We

validate all candidate patterns  � ����������������� via a single scan of the sequence. Note that any single

pattern of format  ��������� � � ����������������� is essentially equivalent to the pattern  � ����������������� (of the same

period) with a shifted starting position in the sequence. A segment-based approach is developed so

that a linear scan of the input sequence is sufficient to locate the longest valid subsequence for a

given pattern.

3. Complex Pattern Verification. An iterative process is carried out where at the � th iteration, the

candidate � -patterns are first generated from the set of valid  ��� � � -patterns, and are then validated

via a scan of the data sequence.

We now elaborate each step in following sections.

5 Distance-based Pruning of Candidate Patterns

Since there are a huge number of potential patterns, � �� � ��������� � , a pruning method is needed to reduce the

number of candidates. The pruning method is motivated by our observation that if a symbol � participates
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in some valid pattern of period � , there should be at least ��� � ���	� times that the distance between two

occurrences of � is exactly � (in order to form a valid segment). So the proposed distance-based pruning

method makes one pass over the data sequence to discover all possible periods and the set of symbols that

are likely to appear in some pattern of each possible period. For each symbol � and period � , the number

of times when the distance between two occurrences of d in the sequence is � is collected.

To perform the distance-based pruning, when scanning through the sequence, we need to maintain

a moving window of the last � ����� symbols scanned. For the next symbol, say � , we compare it with

each of the symbol in the moving window. If a match occurs at the � th position, the count for period

 � ����� � � � � � of symbol � (denoted as ��	��� � ��� ��� �� � ) is incremented by 1. For example, in Figure 2(a),

the third � � in the fifth position will contribute to both � ���� � and � ���  � . Due to the generality of our model,

for each occurrence of a symbol � , we need to track its distance to all of its previous occurrences within

the moving window. Our model does not only allow partially specified patterns such as  � ��������� where �

can also occur in the “*” position, but also recognizes patterns with repetition of the same symbol such

as  � ����� � � . Hence it is not sufficient to just track the distance of a symbol to its last occurrence. Given a

symbol � and a period � , if ��	��� 	 is larger than or equal to the ����� � �	� threshold, then it is possible that

� might participate in some valid pattern of period � . We can use this property to reduce the candidate

patterns significantly.

6 Longest Subsequence Identification for a Single Pattern

If a symbol � and period � pair has passed the distance-based pruning, then the longest subsequence

identification (LSI) algorithm is used to discover the subsequence with the most repetitions of  � �����������������
with period � . Each occurrence of � in the sequence corresponds to a match of the pattern. If � occurs at

position � , then the subsequence from position � to position  � � � � � � is a match of the pattern. Consider

the pattern  � ����������� and the sequence in Figure 3(a). � � occurs 11 times, each of which corresponds to a

match denoted by �  �� � � � � � � . Before presenting the algorithm, we first introduce the concept of

extendibility and subsequence dominance.

Definition 6.1 For any segment � with respect to some pattern
�

, let ����� � 	 ������� � �	� be the list of matches
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D2 D4 D6 D8 D9 D11

D2 D4 D6
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D2

(b) Prefixes of  D1, D3, D5, D7

d1 d1 d1d1 d1d4 d2 d4 d3 d1d1 d3d1 d1d2 d1d2

D10

d1 d2 d4 .  .  .

(a) Matches of (d1, *, *)

(c) Extendibility and dominance

position 12
X1

X2

X3

position 14

invalid prefixes

valid prefixesD1 D3 D5

D1 D3

D1

Figure 3: Example of Extendibility and Subsequence Dominance

of
�

that form � . Then the segment � � formed by ������������� �	��� is called a prefix of � , where � � � � � � .

� is also referred to as an extension of � � . � � is called a valid prefix of � if � � is a valid segment.

Definition 6.2 A segment � is extendible iff it is a prefix of some other segment � �  � ���� � � .

Any segment is also a prefix of itself. For any segment � whose number of repetition is � , there exist �

different prefixes of � . Figure 3(b) shows all four possible prefixes of the segment � � ��� � � � ��� � � ��� in

Figure 3(a), among which the first two are not valid prefixes while the other two are valid if ��� � � �	� ��� .
We also say that the first three prefixes in Figure 3(b) are extendible.

Definition 6.3 For any two valid subsequences � and � with the same starting position, � is a prefix of

� (and � is an extension of � ) iff each valid segment in � is also a valid segment in � , except that the

last valid segment � in � may be a prefix of a valid segment � � in � . Let � be the starting position of the

first match of the pattern in � but not in � . Then we say that � is extended on position � to generate � .

Definition 6.4 Given a pattern
�

, a valid subsequence � is extendible if there exists another valid sub-

sequence �  � �� � � such that � is an extension of � .
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In Figure 3(c), ��� , � 	 , � � are three valid subsequences of  � ����������� if ��� � � �	� � � and ��
� � � � ��� .
� � is a prefix of � 	 and is extended at position 12 to generate � 	 . As a result, ��� is also said to be

extendible.

Definition 6.5 Given a position � , for any two valid subsequences � and � that end between positions

 � � ��
� � ����� � � and � , we say that � dominates � at position � iff the overall number of repetitions of

� is greater than or equal to that of � .

It is clear that, at position 14 in Figure 3(c), � � dominates ��� . This subsequence dominance defines a

total ordering among the set of valid subsequences that are considered to be extendible at any given posi-

tion. If � dominates � at some position � (Figure 4(a)), then the subsequence � � generated by appending
�

to � starting at position � can not be shorter than the extension � � of � generated by appending
�

to �
(Figure 4(b)). Therefore, we do not need to extend � at position � . Note that we still have to keep � since

we may need to extend � (to include � in Figure 4(c)) at some later position �  � 	 � � . This scenario may

happen when � ends at an earlier position than � does and � is known to be not extendible at position � .
This provides the motivation and justification of the pruning technique employed in our algorithm.

Y

Z

V

ZY

Z

V

VY

j - max_dis

(a)

(b)

(c)

X

X

X

X

X’

Y’

i - max_dis i

jj - max_dis

not necessary to generate

not extendible

i ji - max_dis

Figure 4: Subsequence Dominance
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6.1 Algorithm Description

When scanning through a sequence to determine the longest subsequence containing a pattern  � ����������������� ,
the discovery process may experience the following phases repeatedly:

� Phase A: Segment validation. At least one instance of  � ����������������� is found (in the latest segment of

a subsequence), but the number of repetitions of the pattern is still less than ����� ���	� .

� Phase B: Valid segment growth. The segment is now considered to be valid and the repetition count

may continue to grow.

� Phase C: Extension (or disturbance). A valid segment may have ended. It is now going through

some disturbance or noise region to see whether it can get extended to another segment of the

pattern within ��
� � � � , referred to as the extension window. If so, it returns to Phase A. Otherwise

the subsequence terminates.

There are several challenges here. First of all, the transition point from Phase B to Phase C is not obvious.

Although missing the next consecutive match clearly signals the transition to Phase C, the presence of the

next match does not necessarily mean the continuation of Phase B. This is illustrated by � � in Figure 1 at

the  � � � � th position. Secondly, the transition point from Phase C to Phase A is not straightforward, either.

In fact, any (not just the first) � occurring within the extension window can potentially be a candidate

leading to a new extension of the subsequence. For � 	 in Figure 1, it is the second � � in the extension

window that leads to a valid segment. We thus need to develop an efficient tracking mechanism for

managing the phase transitions.

Furthermore, there is also the pruning issue. There can be many overlapping subsequences of a pat-

tern. An efficient pruning criterion needs to be developed to prune the subsequences that cannot become

the longest valid subsequence. This will reduce the number of concurrent subsequences that need to be

tracked. The problem here is that the longest subsequence at a particular instant may be overtaken by a

shorter overlapping subsequence. This is clearly demonstrated in Figure 5(a) by � and � . Assume that

����� ���	� � � and ��
� � � � � � . After recognizing segment � � (before � � is encountered), � overtakes

� even though � grows to be the longest valid subsequence later. However, we also observe that for
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any two valid subsequences � � and � � , if � � begins to dominate � � at some position � in the sequence,

any further extension of � � will always be dominated by some extension of � � (Figure 5(b)). We can

thus prune � � after position � . A good point to check for dominance relationship is at a point when a

segment
�

first becomes valid. This is the point where � � that encompasses
�

becomes valid and the two

overlapping subsequences converge to a common tail segment.

D4 D6 D8 D9 D11

D1 D3 D5 D7

D2 D4 D6 D8 D9 D11

D1 D3 D5 D7

D1 D2 D4

D3 D5 D6 D8 D10

D1 D2 D4 D6 D8 D10

D6 D8 D10D3 D5

D2

(b)

d1 d1 d1d1 d1d4 d2 d4 d3 d1d1 d3d1 d1d2 d1d2

D10

d1 d2 d4 .  .  .

X

Y

(a)

d1 d1 d1d1d1 d1 d1

D7

d1d3 d4 d2 d4 d2 d3 d2 d1

D9

.  .  .d1 d3

segment Z

k

X’

Y’

Figure 5: Valid subsequences of  � � ��������� with ��� � � �	� ��� and ��
� ����� � �

Inspired by above observations, the algorithm can be outlined as follows. As scanning through the

input data sequence, each time a match of pattern  � ����������������� is identified (say, at position � ), the set of

currently extendible subsequences are extended according to the following principles.

� Mark the subsequences that end prior to position ��� � as in Phase C.

� Only the dominating subsequence in Phase B is extended to include the newly discovered match.

� For each subsequence in Phase A, simply extend it by one repetition and check whether the transition

point to Phase B is reached. If so, mark this subsequence as in Phase B. If multiple subsequences

are in Phase B, then only the dominating one is retained.
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� The subsequence with most repetitions in Phase B and C is identified and used to update the longest

valid subsequence for pattern  � ����������������� .

� The dominating subsequence in Phase C is also extended. The newly discovered match serves as

the beginning of a new segment and the subsequence transits to Phase A.

To address the phase transition issues, the algorithm maintains three separate data structures. The

� ����� � ��� � ��� queue tracks all subsequences in Phases A and B. The � 
 � ��� � ��� queue tracks the potential

subsequences in Phase C. The elements in these two queues are overlapped as the transition from Phase B

to Phase C is fuzzy. In fact, every subsequence in Phase B will appear in both � ����� ����� � ��� and � 
 � ��� � ���

queues. Finally, there is the � � ��� � �
	 � ��� that tracks the longest subsequence on a pattern detected so far.

We now describe the contents of the various data structures after scanning the � th position of the input

sequence.

� � � ��� � �
	 � ��� : It contains the longest valid subsequence that is known (at position � ) to be not ex-

tendible. Since we have no knowledge about the data behavior after position � , only valid subse-

quences that end prior to position  ��� ��
� � � � � � � are guaranteed to be not extendible at this

moment. We cannot determine the extendibility of any valid subsequence that ends on or after posi-

tion  ��� ��
� � ��� � � � . Therefore, � � ��� � ��	 � ��� is the longest valid subsequence that ends prior to

position  � � ��
� � � � � � � .

��� ��� ����� � ��� : It contains a set of subsequences that are currently being extended, whose last segment

may or may not have enough repetitions to become valid. As we will explain later, the ending

position of these subsequences are between � and  � � � � � � where � is the period length 	 . Thus,

we can organize them by their ending positions via a queue structure. Each entry in the queue holds

a set of subsequences ending at the same position as illustrated in Figure 6(a). For example, if we

want to verify the pattern  � ����������� against the sequence in Figure 6(c) with thresholds ����� ���	� � �

and ��
� � � � � � , the � ����� ����� � ��� queue is illustrated in Figure 6(d) after processing the � � that

occurs in the � � th position. There are three subsequences being extended, one of which (i.e., � � )
�
It is obvious that there can be at most  different ending positions for these subsequences.
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ends at position � � ( � � is the last match) while the rest (i.e., � 	 and �
� ) end at position � � ( ��� is

the last match). We need to maintain both � 	 and �
� because both of them have a chance to grow to

the longest subsequence. Even though � 	 is longer than ��� , it is not a valid subsequence yet since

the last segment does not meet the ����� ���	� requirement. Therefore, we cannot discard ��� at this

moment.

subsequences with
this ending position

ending position

(a) Data Structure of Each Entry
in the ongoing_seq Queue

D3 D5 D6 D8 D10

d1 d1 d1d1d1 d1 d1

D1 D2 D4 D7

d1d3 d4 d2 d4 d2 d3 d2 d1

D9

d1 d3
31 2 4 5 6 7 8 9

pointer to the list of

d4

(c) Matches of (d1, *, *) in a Sample Sequence 

.  .  .sequence
position 19181716151413121110

start_pos

end_pos

total_rep

current_rep

(b) Auxiliary Information
for each subsequence

D1, D2, D4 D7

D3, D5, D6

D6D1, D2, D4

14

head tail

ongoing_seq

(d) Status of ongoing_seq Queue

S2

S3

S1

13

D3, D5, D6

D1, D2, D4

(e) Status of valid_seq

Figure 6: � ����� ����� � ��� and � 
 � ��� � ��� data structures

� � 
 � ��� � ��� : It contains a set of valid subsequences that may be extendible. Figure 6(e) shows the

� 
 � ��� � ��� set which consists of two valid extendible subsequences. It is necessary to keep them

since we may need to extend a valid subsequence multiple times by appending different matches of

the pattern. For example, the segment � � ��� � 	 � � � � was extended twice as shown in Figure 6(d).

For each subsequence in either � ����� ����� � ��� or � 
 � ��� � ��� , we also keep track of the starting position

��
	 
 � 	 � � � � , the ending position  � � � � ��� � , the number of overall repetitions  	 � 	 
 � ���	� � , and the number

of repetitions of the last segment ���� � � � ��	 � �	� � as shown in Figure 6(b) to facilitate the tracking.
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The LSI algorithm scans through the input data sequence, for each occurrence of symbol � at position

� in sequence � , we have a match from position � to  � � � � � � . Segments of pattern  � ����������������� are

identified and can be used to extend previously generated subsequences if applicable. The following steps

are taken sequentially after a match is detected at position � .

1. The � 
 � ��� � ��� is first examined to remove all subsequences whose ending position is more than

��
� ����� (i.e., the maximum disturbance threshold) away from the current position (i.e., position � ).

Note that these subsequences cannot be extended any further because of the violation of maximum

disturbance requirement. Thus, it is not necessary to keep them in � 
 � ��� � ��� . At the same time,

for each removed subsequence � ��� from � 
 � ��� � ��� , we compare it with � � ��� � �
	 � ��� and update

� � ��� � �
	 � ��� if necessary.

2. The � ����� ����� � ��� queue is then investigated. An iteration is taken where each time the entry at the

head of the queue is examined until the queue is empty or we reach an entry with ending position

on or after � .

(a) If the ending position of the subsequences in this entry is prior to  � � � � , then the last segment

of every subsequence in this entry cannot be extended further. For example, when the circled

� � in Figure 6(c) is reached, we know that the segment � ����� � 	 � ����� had ended. We can simply

dequeue this entry and discard it. The rationale is that we do not have to immediately extend

these subsequences by initiating a new segment starting from the current match because all

valid extendible subsequences in this entry are already in � 
 � ��� � ��� and will be examined in

Step 3.

(b) If the ending position is exactly at  � � � � , the last segment of the subsequences in this entry can

be extended to include the current match. (The circled � � in Figure 6(c) also informs us that the

segment � � � � ��� � can be extended to include � � .) The following steps are taken sequentially.

i. We append the current match to each subsequence in this entry and update the auxiliary

data associated with them accordingly. The ending position of these subsequences is also

updated to  � � � � � � .
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ii. If there are multiple valid subsequences in this entry (i.e., whose ��� � � � ��	 � �	� satisfies the

minimum repetition requirement), then only the subsequence with the largest 	 � 	 
 � � �	�

value is retained, the rest is discarded. It is obvious that all discarded subsequences here

are dominated by the retained one. Hence, the discard would not impact the correctness

of the algorithm while the efficiency can be improved.

iii. After Step ii, there can be at most one valid subsequence in this entry. If there exists one

valid subsequence, then, as a potential Phase C candidate transited from Phase B, this sub-

sequence is replicated to � 
 � ��� � ��� . (Note that it still remains in � ����� � ��� � ��� .) This gives

a valid subsequence the opportunity to be extended in multiple ways concurrently. For ex-

ample, in Figure 6(d), both ��� and �
	 are extended from the valid segment � � ��� � 	 � � � � .
It is necessary even if the last segment of this subsequence is still extendible. Because

this subsequence may dominate all subsequences in � 
 � ��� � ��� at some later position and

in turn will be extended.

iv. Finally, this entry (now ending at position  � � � � � � ) is moved from the head of the

� ����� � ��� � ��� queue to the tail of the queue.

3. In � 
 � ��� � ��� , the subsequence � ��� that ends prior to position � and dominates all other subsequences

with ending position prior to � is identified � . If � ��� does not end at position  � ��� � , then it is used

to create a new subsequence � ��� � ��� by extending � ��� to include the current match � . The interval

between the ending position of � ��� and � is treated as disturbance. � ��� � ��� is, then, inserted into

the entry with ending position  � � � � � � in � ����� ����� � ��� queue. (If such entry does not exist, a new

entry will be created and added to the tail of the � ��� ����� � ��� queue.) This signals the transition of

the subsequence from Phase C to Phase A.

After the entire sequence is scanned, the subsequence which has the largest 	 � 	 
 � ���	� value in � 
 � ��� � ��� �
� � � ��� � ��	 � ��� � is returned.
�
In other words, ����� is longest subsequence among those with ending position prior to � .	
No new subsequence needs to be created if ����� ends at position ��
� because all necessary extensions of subsequences

ending at position ����
���� have been taken at Step 2(b). Step 3 is essentially designed to give the valid subsequence(s) that ends

prior to position ����
���� the opportunity to be extended further by appending the current match.
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6.2 Example

Figure 7(a) shows a sequence of symbols which is the same as in Figure 6(c) where the status of the various

data structures after processing the 7th occurrence of � � at position 12 are shown in Figure 6(d) and (e)

(The � � ��� � ��	 � ��� is still empty.). The process of the 8th, 9th, and 10th occurrences of � � is illustrated in

Figure 8 while the change to the data structures at each step is shown in Figure 7(b), (c), and (d).
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Figure 7: Status of � ����� � ��� � ��� , � 
 � ��� � ��� , and � � ��� � �
	 � ���

From the above example, we can make the following observations.

� For � ����� ����� � ��� , there can be at most � entries, each of which corresponds to a different ending
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is moved from the head of ongoing_seq
to the tail of it.

All subsequences in the entry with
ending position 13 are extended to
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2(b)iv
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generated.

All subsequences in the entry with

change.
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3

2(b)iii

is more than 5 positions away from the

no new subsequence needs to be 
needs to be generated.

Figure 8: Example for Illustration

position between � and  � � � � � � . Furthermore, in each of these entries, each subsequence has

a distinct length of the last segment (i.e., a distinct ��� � � � ��	 � �	� ). Also, there can be only one

subsequence with a ��� � � � ��	 ���	� larger than or equal to ����� ���	� due to Step 2(b)ii.

� For � 
 � ��� � ��� , each element has a distinct ending position between  � � ��
� �������
� � and  � � � � � �
due to Step 1.

6.3 Complexity Analysis

We first analyze the time complexity, then the space complexity of the LSI algorithm.

6.3.1 Time Complexity

The sizes of � 
 � ��� � ��� and � ����� � ��� � ��� are essential for analyzing the time complexity of the LSI algo-

rithm. After processing one target symbol � at position � , at most one valid subsequence will be inserted

to � 
 � ��� � ��� (in Step 2(b)iii with ending position  � � � � � � as indicated in Step 2(b)i). It follows that
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every subsequence in � 
 � ��� � ��� has different ending positions. In addition, after processing each match

(starting at position � ), the ending position of all subsequences in � 
 � ��� � ��� is between  � � ��
� � ��� � � �
and  � � � � � � (inclusively). As a result, there are at most ��
� ����� � � � � subsequences in � 
 � ��� � ��� .

Thus, the complexity of Step 1 is �  ��
� � � � � � � . Since it is invoked once for each match of the pattern,

the overall time complexity of this step for processing LSI for a given symbol � is �  � ���  ��
� � ��� � � � �
where � � is the number of occurrences of � .

Within the entire procedure, each entry removed from the head of � ����� ����� � ��� in Step 2(a) is as-

sociated with a distinct ending position of the target pattern. Since there are at most � � distinct ending

positions (each of which corresponds to a match) in Step 2(b)i, at most � � entries are ever removed from

� ����� � ��� � ��� for a given symbol � and a given period. Step 2(a) can be invoked at most � � times. There-

fore, the overall complexity for Step 2(a) is �  � ��� .
Consider the course of an entry � in � ����� � ��� � ��� from the time it is first initialized in Step 3 to the

time it is permanently discarded in Step 2(a). It is easy to show by induction that each subsequence in

� has a distinct value of ��� � � � ��	 � �	� . This claim holds trivially when � is initialized in Step 3 where

only one subsequence is in � . At each subsequent time a new subsequence � ��� � ��� is added to � (in

Step 3) as a result of processing a match
�

, the value of � � ����� ��	 ���	� of � ��� � ��� is always � since
�

is the only match in the last segment of � ��� � ��� (e.g., � 	 in Figure 6(d)). In contrast, the � � � ��� ��	 ���	�

of other subsequences in � are at least 2 after their last segments were extended to include
�

(e.g., ���
in Figure 6(d)). Therefore, � ��� � ��� has a different value of ��� � � � ��	 � �	� from other subsequences in � .

Thus, we can conclude that each subsequence in � holds a distinct value of ��� � � � ��	 � �	� . Since there is

at most one subsequence whose last segment has at least ����� ���	� repetitions (due to Step 2(b)ii), the

number of subsequences in � is bounded by ��� � � �	� . The complexity of each invocation of Step 2(b)

is �  ��� � ���	� � . At any time, each entry in � ����� � ��� � ��� is associated with a distinct ending position.

When processing a match starting at position � , at most one entry has ending position ����� . The overall

complexity of Step 2(b) for a given symbol � and a given period � is �  � ��� ����� ���	� � .
As we explained before, at most  ��
 � � � � � � � � � subsequences are in � 
 � ��� � ��� at any time. In turn,

it takes �  ��
� � ��� � � � time complexity each time Step 3 is invoked. This brings to a total complexity of

�  � ���  ��
� � ��� � � � � . In summary, the overall complexity of the LSI algorithm for a given symbol and
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period length � is

�  � � �  ��� � � �	� � ��
� � � � � � � � �

For a given period length � , the complexity to find the “longest” subsequence for all symbols is hence

�
��� �

�
� ���  ��� � � �	� � ��
� � � � � � ���

which is � �� �  ��� � � �	� � ��
 � � � � � � � � where � is the length of the input sequence. Thus, the time

complexity to discover the “longest” single-symbol subsequence for all periods and symbols is

� 	� � ������� �  ����� ���	� � ��
� � � � � � ����� � �

where ������� is the maximum period length. This is the worst case complexity. Since the distance-based

pruning may prune a large number of symbol and period pairs, the real running time could be much faster.

In addition, we will propose several techniques that can reduce the time complexity of the LSI algorithm

in Section 6.4.

6.3.2 Space Complexity

There are two main data structures in LSI, � ����� ����� � ��� and � 
 � ��� � ��� . For each symbol � and a given

period length � , the size of � 
 � ��� � ��� is �  ��
� ����� � � � whereas the size of � ����� ����� � ��� is bounded by � �

since for each occurrence of � , one new subsequence is inserted to � ����� ����� � ��� . Furthermore, since each

entry of � ����� ����� � ��� has at most ��� � ���	� subsequences, the size of � ����� � ��� � ��� is �  ��� �� � � � ��� � � �	� �

� � � . Therefore, the space complexity to find the “longest” subsequences for all symbols and a given period

length � is

�   ��
� ����� � � � � � � � ��
 �� � � � � ����� �� � ����� � �	� � � � � � � ��
 �� � � � � �
where � � � ��
 �� � � � is the number of symbols in the input sequence. The overall space complexity for

all possible period lengths is

���  ��
� � � � � � ����� � � � � � ��
 �� � � � � � ����� � ��� ���� � � ����� � ��� � � �	� � � 	����� � � � � ��
 �� � � � �����
The above space complexity analysis is again a theoretical bound in the worst case; however, the space

requirement is much smaller in practice shown in Section 8.2. Thus, in reality, all data structures can be

easily fit into main memory.
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6.4 Improvement of the Longest Subsequence Identification Algorithm

The time complexity of the LSI algorithm can be improved further. One way is to use a queue to store

� 
 � ��� � ��� and a heap to index all subsequences in � 
 � ��� � ��� according to their 	 � 	 
 � � �	� . Each time a

subsequence is inserted into � 
 � ��� � ��� , it is added to the end of the queue. This would naturally make

all subsequences lie in the queue in ascending order of their ending positions. Thus, Step 1 can be easily

accomplished by dequeue obsolete subsequence(s) from the head of the queue. Of course, each of such

operation would incur � ������  ��
� ����� � � � � overhead to maintain the indexing heap. However, in virtue

of the heap indexing, each invocation of Step 3 only requires � ������  ��
� � ��� � � � � time complexity for

period length � . Therefore, the overall complexity of LSI algorithm for all period lengths and symbols is

reduced to

� 	� � � � ��� �  ����� ���	� � �����  ��
� ����� � ������� � � � � (1)

6.5 Proof of Correctness

Lemma 6.1 The last segment of any invalid subsequence removed from � ����� ����� � ��� is not extendible.

Proof. The only place we may remove an invalid subsequence from � ����� ����� � ��� is in Step 2(a). Assume

that the subsequence ends at position �  ��� ��� � � . It must be true that no match starts on position � � � � .
Thus, the last segment of the invalid subsequence is not extendible. 	

Lemma 6.2 At least one prefix of each longest valid subsequence has been put in both � ����� � ��� � ��� and

� 
 � ��� � ��� .

Proof. Consider the starting position, say � , of a longest valid subsequence � . All valid segments starting

before position  � � ����� ���	� � � � have to end before position  � � ��
� � � � � � � . (Otherwise, a longer

valid subsequence can be formed by extending � “backwards” to include additional valid segment(s).

This contradicts the assumption that � is the longest valid subsequence.) As a result, � 
 � ��� is empty at

position � . Then a new subsequence (denoted by � ) starting at position � consisting of one match of the



Otherwise, all subsequences in that entry would be extended to end at position ��  .
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pattern is added to � ����� ����� � ��� . In addition, � is the starting position of a valid segment (because it is

the starting position of � ). By Lemma 6.1, � will stay in � ����� ����� � ��� until it grows to become a valid

subsequence (i.e., cumulates at least ��� � � �	� repetitions). When � is extended to a valid subsequence

(denoted by
�

),
�

will be replicated to � 
 � ��� � ��� because
�

is the longest one in � ����� ����� � ��� . (All other

subsequences in � ����� ����� � ��� start later than
�

.) Thus, this lemma holds. 	

Lemma 6.3 After processing each match, all valid subsequences in � ����� ����� � ��� is also in � 
 � ��� � ��� .

Proof. All valid subsequences in � ����� ����� � ��� are generated in Step 2(b)i (some of which might be

removed immediately in Step 2(b)ii). The remaining one (if applicable) is then replicated in � 
 � ��� � ���

(Step 2(b)iii). 	

By Lemmas 6.1 and 6.2, for any longest valid subsequence, either it is fully generated and used to

update � � ��� � �
	 � ��� or one of its valid prefix is removed from � 
 � ��� � ��� without being extended further.

Now, consider the processing of a match
�

starting on position � .

Lemma 6.4 After processing a match
�

that starts at position � , one of the longest valid subsequences

that end between position  � � ��
� � � � � � � and  � � � � � � is in � 
 � ��� � ��� .

Proof. When processing a match
�

at positions � to  � � � � � � , a valid subsequence � with ending

position �  � � ��
� � � ��� � � � � � � � � may not be extended to include
�

due to one of the following

two reasons.

1. � � ��� � . � was removed from � ����� ����� � ��� in Step 2(b)ii because of the existence of another

valid subsequence � ending at position � in � ����� � ��� � ��� such that � dominates � . � is chosen to

be extended to include
�

and to be retained in � ����� ����� � ��� for potential further extension.

2. Otherwise, � is in � 
 � ��� � ��� and is dominated by some other valid subsequence � in � 
 � ��� � ��� ,

which is extended to include
�

and added into � ����� � ��� � ��� (Step 3).

In summary, the only reason to stop extending � is that � is dominated by some other valid subsequence

� that is extended to include
�

and resides in � ����� ����� � ��� . By Lemma 6.3, all valid subsequences

in � ����� ����� � ��� is in � 
 � ��� � ��� . Therefore, after processing each match, any valid subsequence ending
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between position  ��� ��
� � ��� � � � and  � � � � � � is either itself in � 
 � ��� � ��� or is dominated by some

other valid subsequence in � 
 � ��� � ��� . In other words, at least one of the longest valid subsequences that

end between position  � � ��
� � � � � � � and  � � � � � � is in � 
 � ��� � ��� . 	

Lemma 6.5 After processing a match
�

that starts at position � , one of the longest valid subsequences

that end prior to position  � � ��
� � � � � � � is in � � ��� � �
	 � ��� .

Proof. This proof is trivial because every time a subsequence is removed from � 
 � ��� � ��� (due to an

obsolete ending position), the � � ��� � ��	 � ��� is updated if necessary. 	

The following theorem is a direct inference of Lemma 6.4 and 6.5.

Theorem 6.6 After processing the entire sequence, � � ��� � ��	 � ��� holds one of the longest valid subse-

quences.

7 Complex Patterns

After discovering the single patterns, valid subsequences of different symbols may be combined to form

a valid subsequence of multiple symbols of the same period. We employ a level-wise search algorithm,

which generates the subsequences of � -patterns based on valid subsequences of  � � � � -patterns with the

same period length. To efficiently prune the search space, we use two properties: one is the symbol

property, and the other is the segment property.

Property 7.1 (Symbol property) If a pattern
�

is valid, then all of its generalizations are valid.

Property 7.2 (Segment property) If � � � �  � �  � � � � �� 	���������� � � is a valid segment for pattern
�

, then

� � is also a valid segment of all generalizations of
�

.

Since these two properties are straightforward, we would omit the proof. Based on these properties,

we can prune the candidates of a valid pattern efficiently. For example, if two patterns  � ��������������� and

 � 	 ������������� are valid, then three candidate 2-patterns can be generated:  � ��� � 	 ��������� ,  � ������� � 	 ����� and

 � ����������� � 	 � . As shown in Figure 9, all other 2-patterns of period 4 containing � � and � 	 are equivalent to
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Figure 9: Equivalent Complex Patterns

one of these three patterns with a shifted starting position. Similarly,  � � � � 	 � � � ����� can become a candidate

3-pattern only if  � ��� � 	 ��������� ,  � � ����� � � ����� , and  � 	 � � ����������� are all valid.

After the candidate set of valid � -patterns is generated, then a similar algorithm to LSI is executed to

verify whether these candidates are indeed valid patterns. As a side product, the LSI algorithm also finds

the valid subsequence with the most repetitions for each valid pattern.

8 Discussion

8.1 Parameters Specification

In our approach, the mining results can be effected by the choice of the two parameters ����� ���	� and

��
� � ��� . When the parameters are not set properly, noises may be qualified as patterns. We use an

iterative method to set the proper value for these two parameters. After discovering patterns for a given

pair of ����� ���	� and ��
 � � � � , we prune those discovered patterns according to the statistical significance.

For example, if  
 ��������� is a discovered pattern and the expected continuous repetition of this pattern in a

random sequence exceeds the ����� ���	� threshold, then we can conclude that this pattern may occur due

to chance and it should be discarded. Notice that there may not be a uniform threshold of ����� ���	� and

��
� � ��� for statistical significance since the probability of occurrence of two patterns may be difference.

For instance, the occurrence probability of  
 ��������� should be higher than that of  
 � � ����� . After pruning, if

the number of remaining patterns is too small, and we can adjust the parameters of ����� ���	� and ��
� � � � ,

e.g., reducing ��� � � �	� or increasing ��
� � � � , and mine patterns again. This process terminates when

there is a sufficient number of patterns discovered.
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8.2 Noises

There may be many types of noises in real applications. The parameter ��
 � � � �
	 is employed to recognize

the noises between segments of perfect repetitions of a pattern. There may exist other types of noises, e.g.,

intra-pattern noise. Let  
 � � ����� � ��������� � � be a pattern. The segment 
 ��� � 
�
�
�� may be the occurrence of

this pattern with some noise. (There is an extra symbol between the last two � s.) We can modify the

definition of asynchronous pattern slightly to recognize this type of noises. If a segment is very similar to

a pattern (within a certain degree), then we consider the segment as a repetition of the pattern. Without

major modification, our algorithm should be able to handle this type of noise.

8.3 Extensions

In some application, e.g., sensor network, multiple events may occur simultaneously. As a result, it is

possible that multiple symbols may occur in the same position within a sequence. The proposed approach

can be easily extended to handle this situation. We only need to modify one step in our algorithm. When

generating candidates, we need to take into account all possible subsets of symbols at a time slot. For

example, if symbols ����� occurred at the same time slot, then during candidate generation phase, we need

to consider four possible candidates for this time slot, � � � , � � � , � � ��� � , and � � � .
The other possible extension of the asynchronous pattern is to discover possible sequential rules, e.g.,

“ � is followed by � with a chance � ��� in a given subsequence”. To find this type of sequential rules, the

minimum repetitions can be viewed as support. The asynchronous patterns discovered by our algorithm

can be considered as the patterns that satisfy the support threshold. In the post-process step, we can verify

whether the rules satisfy the confidence requirement. To quality the rule “ � is followed by � with a chance

� ��� , then by 	 with a probability � � � in a given subsequence”, all three patterns  
 ����������� � , �� ����������� � ,
and �� ����������� � have to be valid for the a sufficient long portion of the sequence. Next, we can verify whether

the confidence requirement (e.g., � ��� and � � � ) is also satisfied.
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9 Experimental Results

We implemented the PatternMiner in C programming language and it is executed on an IBM RS-6000

(300 MHz CPU) with 128MB running an AIX operating system.

9.1 Real Sequence

We first apply our model to a real trace of a web access log. Scour is a web search engine specialized in

multimedia content search whose URL is “http://www.scour.net”. Since early of 2000, the average daily

number of hits on Scour has grown over one million. A trace of all hits on Scour between March 1 and

June 8 (total 100 days) were collected. The total number of accesses is over 170 million. Then the entire

trace is summarized into a sequence as follows. The trace is divided into 10 minute intervals. The number

of hits during each 10 minute interval is calculated. Finally, we label each interval with a symbol. For

example, if the number of hits is between 0 and 4999, then this interval is labeled as 
 , if the number of

hits is between 5000 and 9999, then this interval is labeled as � , and so on. The summarized sequence

consists of 14400 occurrences of 71 distinct symbols.

There exist some interesting patterns discovered by our algorithm. When ��� � � �	� and ��
� ����� are

set to 4 and 200, respectively, there are overall 212 patterns discovered. The following is some example

of discovered patterns. There exists a pattern ( � , � , � ) in weekdays between 3am and 8:30am EST. Another

pattern ( � , � , � ) occurs during 11am to 5pm EST weekday.

In the above experiment, the overall length of the sequence is relatively short (14400), hence, all three

mining processes are done in less than 1 minute. To further understand the behavior of our proposed

asynchronous pattern mining algorithm, we constructed four long synthetic sequences and the sensitive

analysis of our algorithm on these sequences is presented in the following section.

9.2 Synthetic Sequence Generation

For the purpose of evaluation of the performance of the PatternMiner, we use four synthetically generated

sequences. Each sequence consists of 1024 distinct symbols and 20M occurrences of symbols. The

synthetic sequence is generated as follows. First, at the beginning of the sequence, the period length �
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of the next pattern is selected based on a geometric distribution with mean � 	 . The number of symbols

involved in a pattern is randomly chosen between 1 and the period � . The number of valid segments is

chosen according to a geometrical distribution with mean ��� . The number of repetitions of each valid

segment follows a geometrical distribution with mean ��� . After each valid segment, the length of the

disturbance is determined based on a geometrical distribution with mean ��� . This process repeats until

the length of the sequence reaches 20M. Four sequences are generated based on values of � 	 , ��� , ��� ,

and � � in Table 1. In the following experiments, we always set ��� ��� � � � � � and for each period � ,
��
� � ��� � ���	� ��
��� 	

� .

Data Set � 	 ��� ��� � �

� � � 5 5 50 50

� � � 5 5 1000 1000

� � � 100 1000 50 50

� � � 100 1000 1000 1000

Table 1: Parameters of Synthetic Data Sets

9.3 Distance-based Pruning

In this section, we are investigating the effects of distance-based pruning. Without the distance-based

pruning, there could be as many as � � � � � � ��� different single patterns  � ����������������� �� � � � � . Fig-

ure 10(a) shows the fraction of patterns eliminated by distance-based pruning. It is evident that the num-

ber of pruned patterns is a monotonically increasing function of the ����� ���	� threshold. With a reasonable

����� ���	� threshold, only a small portion of potential single patterns need to be validated and used to

generate candidate complex pattern.

Figure 10(b) shows the space utilized by � ����� ����� � ��� and � 
 � ��� � ��� for all patterns in the LSI algo-

rithm. The real space utilization is far less than the theoretical bound shown in Section 6.3.2 due to the

following two reasons. First a large number of candidate patterns are pruned. (More than 90% as shown in

Figure 10(a).) Secondly, in the theoretical analysis, we consider the worst case for the space utilization of

� ����� � ��� � ��� , however, in reality, the space occupied � ����� ����� � ��� is much less than the theoretical bound.
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Figure 10: Effects of Distance-based Pruning

9.4 Pattern Verification

After the distance-based pruning, each remaining potential single pattern is validated through the LSI

algorithm. Since the validation process (even for a given pattern) is not a trivial task, in this subsection,

we demonstrate the efficiency of our LSI algorithm by comparing it with a reasonable two stage (TS)

algorithm. In the TS algorithm, for a given pattern, all valid segments are first discovered, then all possible

combinations of valid segments are tested and the one with the most repetition is chosen. Figure 11 shows

the average elapse time of validating a pattern. (Note that the Y-axis is in log scale.) It is evident that LSI

can outperform the TS algorithm by at least one order of magnitude regardless the ��� � � �	� threshold.

9.5 Overall Response Time

Figure 12 shows the overall response time of PatternMiner to find all patterns. The x-axis shows the value

of ��� � ���	� whereas the y-axis shows the overall response time of PatternMiner. The higher the ��� � � �	�

threshold, the shorter the overall response time. This is in contrast to Formula 1 due to the effect of

distance-based pruning shown in Figure 10.
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Figure 11: LSI Algorithm vs. TS Algorithm
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Figure 12: Overall Response Time of PatternMiner

10 Conclusion

In this paper, we propose a more flexible model of asynchronous periodic patterns to mine patterns that are

of any length and may only be present within a subsequence, and whose occurrences may be shifted due
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to disturbance. Two parameters ����� ���	� and ��
� � ��� are employed to specify the minimum number of

repetitions required within each contiguous segment of pattern occurrences and the maximum disturbance

allowed between any two successive valid segments. Upon satisfying these two requirements, the longest

valid subsequence of a pattern is returned. A two phase algorithm is devised to first generate potential

periods by distance-based pruning followed by an iterative procedure to derive and validate candidate

patterns and locate the longest valid subsequence. We also show that this algorithm can not only provide

linear time complexity with respect to the input sequence length but also achieve space efficiency. This is

also demonstrated via the experimental results.
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