PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth

Authors: Jian Pei, Jiawei Han, Behzad Mortazavi-Asi, Helen Pinto Qiming Chen, Umeshwar Dayal, Mei-Chun Hsu

> Presenter: Wojciech Stach

Outline

Sequential Pattern Mining

Find all the frequent subsequences, i.e. the

subsequences whose occurrence frequency in the

set of sequences is no less than min support

Sequential Pattern Mining

- Given
 - a set of sequences, where each sequence consists of a list of elements and each element consists of set of items
 - user-specified min_support threshold

5	id	Sequence
	10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
	20	<(ad)c(bc)(ae)>
	30	<(ef)(ab)(df)cb>
	40	<eg(af)cbc></eg(af)cbc>

<a(abc)(ac)d(cf)> - 5 elements, 9 items

<a(abc)(ac)d(cf)> - 9-sequence

 $<a(abc)(ac)d(cf)> = <a(cba)(ac)d(cf)> \\ <a(abc)(ac)d(cf)> \neq <a(ac)(abc)d(cf)>$

id Sequence 10 <a(abc)(ac)d(cf)> 20 <(ad)c(bc)(ae)> 30 <(ef)(ab)(df)cb> 40 <eg(af)cbc>

min support = 2

Solution – 53 frequent subsequences

<a><a> <ab> <a(bc)> <a(bc)> <a(bc)a> <aba> <abc> <(ab)> <(ab)c> <(ab)d> <(ab)f> <(ab)dc> <ac> <aca> <acb> <acc> <ad> <adc> <af>

 <ba> <bc> <(bc)> <(bc)a> <bd> <bdc> <bf>

<c> <ca> <cb> <cc>

<d> <db> <dc> <dc>>

<e>> <ea> <eab> <eac> <eacb> <eb> <ebc> <ec> <ecb> <eb> <ebc> <ec> <ecb> <ef> <efb> <efc> <efcb> <

<f> <fb> <fbc> <fc> <fcb>

4

Subsequence vs. super sequence

- Given two sequences $\alpha = \langle a_1 a_2 \dots a_n \rangle$ and $\beta = \langle b_1 b_2 \dots b_m \rangle$
- α is called a subsequence of β , denoted as $\alpha \subseteq \beta$, if there exist integers $1 \le j_1 < j_2 < ... < j_n \le m$ such that $a_1 \subseteq b_{j_1}, a_2 \subseteq b_{j_2}, ..., a_n \subseteq b_{j_n}$
- β is a super sequence of α

 $\beta = \langle a(abc)(ac)d(cf) \rangle \qquad \beta = \langle a(abc)(ac)d(cf) \rangle \\ \alpha_1 = \langle aa(ac)d(c) \rangle \qquad \alpha_4 = \langle df(cf) \rangle \\ \alpha_2 = \langle (ac)(ac)d(cf) \rangle \qquad \alpha_5 = \langle (cf)d \rangle \\ \alpha_3 = \langle ac \rangle \qquad \alpha_6 = \langle (abc)dcf \rangle$

Sequence Support Count

- A sequence database is a set of tuples <sid, s>
- A tuple <sid, s> is said to contain a sequence α, if α is a subsequence of s, i.e., α ⊆s
- The support of a sequence α is the number of tuples containing α

6 $support(\alpha_1) = 4$ α₁=<a> id Sequence 10 <a(abc)(ac)d(cf)> $support(\alpha_2) = 4$ $\alpha_2 = <ac>$ 20 <(ad)c(bc)(ae)> 30 <(ef)(ab)(df)cb> $support(\alpha_3) = 2$ $\alpha_3 = <(ab)c>$ 40 <eg(af)cbc>

Strategies

- Apriori-property based
 - AprioriSome (1995)
 - AprioriAll (1995)
 - DynamicSome (1995)
 - GSP (1996)
- Regular expression constraints
 - SPIRIT (1999)
- Data projection based
 - FreeSpan (2000)

Outline

- Mining Sequential Patterns
 - Problem statement
 - Definitions & examples
 - Strategies
- PrefixSpan algorithm
 - Motivation
 - Definitions & examples
 - Algorithm
 - Example
 - Performance study
- Conclusions

5

Motivation and Background

- Shortcomings of Apriori-like approaches
 - Potentially huge set of candidate sequences
 - Multiple scans of databases
 - Difficulties at mining long sequential patterns
- FreeSpan (<u>Fre</u>quent pattern-projected <u>Sequential pattern</u> mining) – pattern growth method
 - General idea is to use frequent items to recursively project sequence databases into a smaller projected databases and grow subsequence fragments in each projected database
- PrefixSpan (<u>Prefix</u>-projected <u>Sequential pattern</u> mining)
 - Less projections and quickly shrinking sequences

Prefix

- Given two sequences $\alpha = \langle a_1 a_2 \dots a_n \rangle$ and $\beta = \langle b_1 b_2 \dots b_m \rangle$, $m \leq n$
- Sequence β is called a prefix of α if and only if:
 - $b_i = a_i$ for $i \le m-1$;
 - b_m ⊆ a_m;
 - All the items in $(a_m b_m)$ are alphabetically after those in b_m

 $\alpha = <a(abc)(ac)d(cf)>$

 $\beta = \langle a(abc)a \rangle$

٩

10

Projection

- Given sequences α and β, such that β is a subsequence of α.
- A subsequence α' of sequence α is called a projection of α w.r.t. β prefix if and only if
 - α' has prefix β;
 - There exist no proper super-sequence α'' of α' such that α'' is a subsequence of α and also has prefix β

```
\alpha = <a(abc)(ac)d(cf)>
```

```
\beta = <(bc)a>
```

Ø

 $\alpha' = <(bc)(ac)d(cf)>$

Postfix

- Let $\alpha' = \langle a_1 a_2 \dots a_n \rangle$ be the projection of α w.r.t. prefix $\beta = \langle a_1 a_2 \dots a_{m-1} a'_m \rangle$ (m $\leq n$)
- Sequence $\gamma = \langle a''_m a_{m+1} \dots a_n \rangle$ is called the postfix of α w.r.t. prefix β , denoted as $\gamma = \alpha / \beta$, where $a''_m = (a_m a'_m)$
- We also denote $\alpha = \beta \cdot \gamma$
- 8

 $\alpha' = <a(abc)(ac)d(cf)>$

 $\beta = <a(abc)a>$

 $\gamma = <(_c)d(cf)>$

PrefixSpan – Algorithm

- Input: A sequence database S, and the minimum support threshold min_sup
- Output: The complete set of sequential patterns
- **Method**: Call PrefixSpan(<>,0,S)
- Subroutine PrefixSpan(α, I, S|_α)
- Parameters:
 - α: sequential pattern,
 - I: the length of α;
 - S|_α: the α-projected database, if α ≠<>; otherwise; the sequence database S.

13

PrefixSpan – Algorithm (2)

Method

- 1. Scan S $|_{\alpha}$ once, find the set of frequent items b such that:
 - a) b can be assembled to the last element of α to form a sequential pattern; or
 - b) < b> can be appended to α to form a sequential pattern.
- 2. For each frequent item b, append it to α to form a sequential pattern α' , and output α' ;
- 3. For each α' , construct α' -projected database $S|_{\alpha',\alpha}$ and call PrefixSpan(α' , I+1, $S|_{\alpha'}$).

PrefixSpan - characteristics

- No candidate sequence needs to be generated by PrefixSpan
- Projected databases keep shrinking
- The major cost of PrefixSpan is the construction of projected databases
- How to reduce this cost?
- Different projection methods
 - Bi-level projection
 - reduces the number and the size of projected databases
 - Pseudo-Projection
 - reduces the cost of projection when projected database can be held in main memory

17

Ø

Bi-level projection (2)

- For each length-2 sequential pattern α, construct the α-projected database and find the frequent items
- Construct corresponding S-matrix

Bi-level projection (3) - optimization

- "Do we need to include every item in a postfix in the projected databases?"
- NO! Item pruning in projected database by 3-way Apriori checking

<ac> is not frequent
Any super-sequence of
it can never be a sequential
pattern
c can be excluded from construction of
cab> - projected database
ca(bd)> is not frequent
To construct <a(bc)>-projected database,
sequence <a(bcde)df> should be projected to <(_e)df>
instead of <(_de)df>

Pseudo-Projection

- **Observation**: postfixes of a sequence often appear repeatedly in recursive projected databases
- **Method**: instead of constructing *physical* projection by collecting all the postfixes, we can use pointers referring to the sequences in the database as a pseudo-projection
- Every projection consists of two pieces of information: pointer to the sequence in database and offset to the postfix in the sequence

s1= <a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>

Pointer	Offset	Postfix
s1	2	<(abc)(ac)d(cf)>
s1	5	<(ac)d(cf)>
s1	6	<(_c)d(cf)>

21

Experimental Results

- Environment: 233MHz Pentium PC, 128 MB RAM, Windows NT, Visual C++ 6.0
- Reported test on synthetic data set: C10T8S8I8:
 - 1000 items
 - 10000 sequences
 - Average number of items within elements: 8
 - Average number of elements in a sequence: 8
- Competitors:
 - GSP
 - FreeSpan
 - PrefixSpan-1 (level-by-level projection)
 - PrefixSpan-2 (bi-level projection)

Runtime vs. support threshold - 0- - PrefixSpan-1 200 400 Prefix Span-- PrefixSpan-2 350 PrefixSpan-2 - Prefix Span-1 (Pseudo) Runtime (second) 300 FreeSpan Prefix Span-2 (Pseudo) 250 - GSF 120 200 untime 80 150 100 50 0. 0.30 0.40 0.00 0.50 1.00 1.50 2.00 2.50 3.00 0.20 0.50 0.60 Support threshold (%) Support threshold (%)

400 500

Outline

- Mining Sequential Patterns
 - Problem statement
 - Definitions & examples
 - Strategies
- PrefixSpan algorithm
 - Motivation
 - Definitions & examples
 - Algorithm
 - Example
 - Performance study
- Conclusions

25

References

- Pei J., Han J., Mortazavi-Asl J., Pinto H., Chen Q., Dayal U., Hsu M., PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth, 17th International Conference on Data Engineering (ICDE), April 2001
- Agrawal R., Srikant R., Mining sequential patterns, Proceedings 1995 Int. Conf. Very Large Data Bases (VLDB'94), pp. 487-499, 1995
- Han J., Dong G., Mortazavi-Asl B., Chen Q., Dayal U., Hsu M.-C., Freespan: Frequent pattern-projected sequential pattern mining, Proceedings 2000 Int. Conf. Knowledge Discovery and Data Mining (KDD'00), pp. 355-359, 2000
- Srikant R., Agrawal R., Mining sequential pattern: Generalizations and performance improvements, Proceedings 5th Int. /conf. Extending Database Technology (EDBT'96), pp. 3-17, 1996
- Zhao Q., Bhowmick S. S., Sequential Pattern Mining: A Survey. Technical Report Center for Advanced Information Systems, School of Computer Engineering, Nanyang Technological University, Singapore, 2003

Conclusions

- PrefixSpan
 - Efficient pattern growth method
 - Outperforms both GSP and FreeSpan
 - Explores prefix-projection in sequential pattern mining
 - Mines the complete set of patterns but reduces the effort of candidate subsequence generation
 - Prefix-projection reduces the size of projected database and leads to efficient processing
 - Bi-level projection and pseudo-projection may improve mining efficiency

THANK YOU !!!

Any Questions?