
PrefixSpan: Mining Sequential Patterns
Efficiently by Prefix-Projected Pattern

Growth
Authors:

Jian Pei, Jiawei Han, Behzad Mortazavi-Asi, Helen Pinto Qiming Chen,
Umeshwar Dayal, Mei-Chun Hsu

Presenter:
Wojciech Stach

2

`

Outline

Mining Sequential Patterns
Problem statement
Definitions & examples
Strategies

PrefixSpan algorithm
Motivation
Definitions & examples
Algorithm
Example
Performance study

Conclusions

3

`

Sequential Pattern Mining

Given
a set of sequences, where each sequence consists of a list
of elements and each element consists of set of items
user-specified min_support threshold

<a(abc)(ac)d(cf)> = <a(cba)(ac)d(cf)>
<a(abc)(ac)d(cf)> ≠ <a(ac)(abc)d(cf)>

<a(abc)(ac)d(cf)> - 5 elements, 9 items

<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

Sequenceid

<a(abc)(ac)d(cf)> - 9-sequence

4

`

Sequential Pattern Mining

Find all the frequent subsequences, i.e. the
subsequences whose occurrence frequency in the
set of sequences is no less than min_support

<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

Sequenceid

min_support = 2

Solution – 53 frequent subsequences

<a><aa> <ab> <a(bc)> <a(bc)a> <aba> <abc>
<(ab)> <(ab)c> <(ab)d> <(ab)f> <(ab)dc> <ac>
<aca> <acb> <acc> <ad> <adc> <af>

 <ba> <bc> <(bc)> <(bc)a> <bd> <bdc> <bf>

<c> <ca> <cb> <cc>

<d> <db> <dc> <dcb>

<e> <ea> <eab> <eac> <eacb> <eb> <ebc> <ec>
<ecb> <ef> <efb> <efc> <efcb>

<f> <fb> <fbc> <fc> <fcb>

5

`

Subsequence vs. super sequence

Given two sequences α=<a1a2…an> and
β=<b1b2…bm>
α is called a subsequence of β, denoted as α⊆ β ,
if there exist integers 1≤j1<j2<…<jn ≤m such that
a1⊆ bj1, a2 ⊆ bj2,…, an⊆ bjn

β is a super sequence of α

β =<a(abc)(ac)d(cf)>

α1=<aa(ac)d(c)>

α2=<(ac)(ac)d(cf)>

α3=<ac>

α4=<df(cf)>

α5=<(cf)d>

α6=<(abc)dcf>

β =<a(abc)(ac)d(cf)>

6

`

Sequence Support Count

A sequence database is a set of tuples <sid, s>
A tuple <sid, s> is said to contain a sequence α, if
α is a subsequence of s, i.e., α ⊆ s
The support of a sequence α is the number of
tuples containing α

<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

Sequenceid

α2=<ac> support(α2) = 4

α3=<(ab)c> support(α3) = 2

α1=<a> support(α1) = 4

7

`

Strategies

Apriori-property based
AprioriSome (1995)
AprioriAll (1995)
DynamicSome (1995)
GSP (1996)

Regular expression constraints
SPIRIT (1999)

Data projection based
FreeSpan (2000)

8

`

Outline

Mining Sequential Patterns
Problem statement
Definitions & examples
Strategies

PrefixSpan algorithm
Motivation
Definitions & examples
Algorithm
Example
Performance study

Conclusions

9

`

Motivation and Background

Shortcomings of Apriori-like approaches
Potentially huge set of candidate sequences
Multiple scans of databases
Difficulties at mining long sequential patterns

FreeSpan (Frequent pattern-projected Sequential pattern
mining) – pattern growth method

General idea is to use frequent items to recursively project
sequence databases into a smaller projected databases and
grow subsequence fragments in each projected database

PrefixSpan (Prefix-projected Sequential pattern mining)
Less projections and quickly shrinking sequences

10

`

Prefix

Given two sequences α=<a1a2…an> and
β=<b1b2…bm>, m≤n
Sequence β is called a prefix of α if and only if:

bi = ai for i ≤ m-1;
bm ⊆ am;
All the items in (am – bm) are alphabetically after those in
bm

β =<a(abc)a>

α =<a(abc)(ac)d(cf)>

β =<a(abc)c>

α =<a(abc)(ac)d(cf)>

11

`

Projection

Given sequences α and β, such that β is a
subsequence of α.
A subsequence α’ of sequence α is called a
projection of α w.r.t. β prefix if and only if

α’ has prefix β;
There exist no proper super-sequence α’’ of α’ such that
α’’ is a subsequence of α and also has prefix β

β =<(bc)a>

α =<a(abc)(ac)d(cf)>

α’ =<(bc)(ac)d(cf)>

12

`

Postfix

Let α’ =<a1a2…an> be the projection of α w.r.t.
prefix β=<a1a2…am-1a’m> (m ≤n)
Sequence γ=<a’’mam+1…an> is called the postfix of
α w.r.t. prefix β, denoted as γ= α/ β, where
a’’m=(am-a’m)
We also denote α =β⋅γ

α’ =<a(abc)(ac)d(cf)>

β =<a(abc)a>

γ=<(_c)d(cf)>

13

`

PrefixSpan – Algorithm

Input: A sequence database S, and the minimum support
threshold min_sup

Output: The complete set of sequential patterns

Method: Call PrefixSpan(<>,0,S)

Subroutine PrefixSpan(α, l, S|α)

Parameters:
α: sequential pattern,
l: the length of α;
S|α: the α-projected database, if α ≠<>; otherwise; the
sequence database S.

14

`

PrefixSpan – Algorithm (2)

Method
1. Scan S|α once, find the set of frequent items b

such that:
a) b can be assembled to the last element of α to form a

sequential pattern; or
b) can be appended to α to form a sequential pattern.

2. For each frequent item b, append it to α to form a
sequential pattern α’, and output α’;

3. For each α’, construct α’-projected database S|α’,
and call PrefixSpan(α’, l+1, S|α’).

15

`

PrefixSpan - Example
<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

Sequenceid

min_support = 21. Find length-1 sequential patterns

3

<f>

3

<d>

1

<g>

3

<e>

4

<c>

44

<a>

2. Divide search space
Prefix

<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>

<(_b)(df)cb>
<(_f)cbc>

<a>

<(_c)(ac)d(cf)>
<(_c)(ae)>
<(df)cb>

<c>

<(ac)d(cf)>
<(bc)(ae)>

<bc>

<c>

<(cf)>
<c(bc)(ae)>

<(_f)cb>

<d>

<(_f)(ab)(df)cb>
<(af)cbc>

<e>

<(ab)(df)cb>
<cbc>

<f>

16

`

PrefixSpan – Example (2)

3. Find subsets of sequential patterns

<(cf)>
<c(bc)(ae)>

<(_f)cb>

<d>

<(_c)>

<db>

<(bc)>

<dc>

<>

<dcb>

1

<(_f)>

1

<f>

0

<(_e)>

1

<e>

0

<d>

321

<c><a>

<db> <dc>

12

<c>

<dcb>

17

`

PrefixSpan - characteristics
No candidate sequence needs to be generated by
PrefixSpan
Projected databases keep shrinking
The major cost of PrefixSpan is the construction of
projected databases

How to reduce this cost?

Different projection methods
Bi-level projection

reduces the number and the size of projected databases

Pseudo-Projection

reduces the cost of projection when projected database can be
held in main memory

18

`

Bi-level Projection

Scan to get 1-length sequences
Construct a triangular matrix instead of projected
databases for each length-1 patterns

f

1

edcba

(2,0,1)(1,1,1)(1,2,1)(2,2,0)(2,1,1)f

0(1,1,0)(1,2,0)(1,2,0)(1,2,1)e

0(1,3,0)(2,2,0)(2,1,1)d

3(3,3,2)(4,2,1)c

1(4,2,2)b

2a

<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

Sequenceid

min_support = 2

Support(<ac>) = 4
Support(<ca>) = 2
Support(<(ac)>) = 1

Support(<cc>) = 3

ALL length-2 sequential
pattern

19

`

Bi-level projection (2)

For each length-2 sequential pattern α, construct
the α-projected database and find the frequent
items
Construct corresponding S-matrix

<(_c)(ac)(cf)>
<(_c)a>

<c>

<ab>

0

(_f)

1

f

0

(_e)

0

e

1

(_d)

0

d

2

(_c)

202

cba

<aba> <abc> <a(bc)>

(_c)ca

φ(φ,1, φ)(φ,2, φ)(_c)

1(1,0,1)c

0a

<a(bc)a>
20

`

Bi-level projection (3) - optimization

“Do we need to include every item in a postfix in
the projected databases?”
NO! Item pruning in projected database by 3-way
Apriori checking

<ac> is not frequent
Any super-sequence of
it can never be a sequential
pattern

c can be excluded from construction of
<ab> - projected database

<a(bd)> is not frequent To construct <a(bc)>-projected database,
sequence <a(bcde)df> should be projected to <(_e)df>
instead of <(_de)df>

21

`

Pseudo-Projection

Observation: postfixes of a sequence often
appear repeatedly in recursive projected databases
Method: instead of constructing physical
projection by collecting all the postfixes, we can
use pointers referring to the sequences in the
database as a pseudo-projection
Every projection consists of two pieces of
information: pointer to the sequence in database
and offset to the postfix in the sequence

s1=<a(abc)(ac)d(cf)>

<(_c)d(cf)>6s1

<(ac)d(cf)>5s1

<(abc)(ac)d(cf)>2s1

PostfixOffsetPointer

22

`

Experimental Results

Environment: 233MHz Pentium PC, 128 MB RAM,
Windows NT, Visual C++ 6.0
Reported test on synthetic data set: C10T8S8I8:

1000 items
10000 sequences
Average number of items within elements: 8
Average number of elements in a sequence: 8

Competitors:
GSP
FreeSpan
PrefixSpan-1 (level-by-level projection)
PrefixSpan-2 (bi-level projection)

23

`

Runtime vs. support threshold

24

`

I/O costs vs. threshold and scalability

25

`

Outline

Mining Sequential Patterns
Problem statement
Definitions & examples
Strategies

PrefixSpan algorithm
Motivation
Definitions & examples
Algorithm
Example
Performance study

Conclusions

26

`

Conclusions

PrefixSpan
Efficient pattern growth method
Outperforms both GSP and FreeSpan
Explores prefix-projection in sequential pattern mining
Mines the complete set of patterns but reduces the effort
of candidate subsequence generation
Prefix-projection reduces the size of projected database
and leads to efficient processing
Bi-level projection and pseudo-projection may improve
mining efficiency

27

`

References

Pei J., Han J., Mortazavi-Asl J., Pinto H., Chen Q., Dayal U., Hsu M.,
PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected
Pattern Growth, 17th International Conference on Data Engineering
(ICDE), April 2001
Agrawal R., Srikant R., Mining sequential patterns, Proceedings 1995
Int. Conf. Very Large Data Bases (VLDB’94), pp. 487-499, 1995
Han J., Dong G., Mortazavi-Asl B., Chen Q., Dayal U., Hsu M.-C.,
Freespan: Frequent pattern-projected sequential pattern mining,
Proceedings 2000 Int. Conf. Knowledge Discovery and Data Mining
(KDD’00), pp. 355-359, 2000
Srikant R., Agrawal R., Mining sequential pattern: Generalizations
and performance improvements, Proceedings 5th Int. /conf.
Extending Database Technology (EDBT’96), pp. 3-17, 1996
Zhao Q., Bhowmick S. S., Sequential Pattern Mining: A Survey.
Technical Report Center for Advanced Information Systems, School
of Computer Engineering, Nanyang Technological University,
Singapore, 2003

28

`

Any Questions?

THANK YOU !!!

