
Chapter 1

Introduction

Since its inception by Agrawal and Srikant in 1995 the field of Sequence Mining has
grown both in algorithmic maturity and in the breadth of application areas under
consideration. With the amount of available data increasing at an exponential rate this
trend, especially algorithmic development, must continue and indeed be enhanced with
better methods for extracting and interpreting rules and displaying them in meaningful
ways. In the area of sequential pattern mining, as is the case for all areas of data
mining, what is of interest is the use of the discovered sequences to formulate rules
that can be used for describing a phenomenon, or predicting future events and with the
advancements in this area there is an increased need to attach more meaning to the
rules that are generated. As a consequence, rules based on the temporal logic of Allen
(1983) and extensions of this algebra by Freksa (1992), Badaloni and Giacomin (1999,
2002, 2006) and also Ohlbach (2004b) have now been considered by researchers.

This thesis is structured in the following manner. Chapter 2 comprises a survey
of the area of sequence mining and is concluded with a discussion on rule inference.
This is followed, in Chapter 3, by a survey of those temporal logics and extensions
that are relevant to any rule determinations in sequence mining. Having laid this
foundation, Chapter 4 introduces the formal concept of the Midpoint Interval (MI)
algebra, both equal-length (ELMI) and variable-length (VLMI), sequences developed
in this thesis. Chapter 5 presents a method for discovering interacting episodes from
temporal sequences and analyses them using the temporal patterns presented in the
earlier chapters. As an extension to this process Chapter 6 discusses relevant timing
considerations and proposes a solution. All algorithms pertaining to both Chapter 5 and
Chapter 6 are included in Appendix C. Chapter 7 investigates the use of transitivity
tables for further reasoning between two or more sets of events thereby enabling more
complex sets of rules to be elaborated. All transitivity tables that are referred to in this
thesis are included in Appendix A. The types of rules generated by methods presented
in this thesis can become quite complex, and to date, to the authors knowledge, have
only been presented in a textual format. In an attempt to address this situation and
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CHAPTER 1. INTRODUCTION 2

present the rules in a manner that conveys the semantics in a more meaningful way, a
visualization to perform this task has been developed and is included in Appendix B.

The areas of contribution made by this thesis and the areas of direct and indirect
influence on this thesis are depicted in Figure 1.1.
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The following publications are attributed to the research conducted as part of this
thesis or material presented within this thesis. However, where the latter is the case the
material has been re-examined and revised as necessary. Publication 1 relates directly
to Chapter 5 and has been revised and updated before inclusion. Publication 3 is a
result of research carried out for the proposed MI algebra presented in Chapter 4 and
Publication 4 is the software that supports the research. Chapter 6 dealing with timing
is a revised version of Publication 5.

During the candidature the methodology was tested for use with text as the input
sequence and this required modifications to the software. These modifications resulted
in a framework for the analysis of text, as a sequence mining problem, and also Publi-
cation 2. This collaborative research, although related, is somewhat orthogonal to the
main thrust of the research carried out as part of this thesis, and therefore discussion
relating to this framework appears in Chapter 8 – Conclusions and Future Research.
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Chapter 2

Sequential Pattern Mining

The discovery and use of associations is a primary focus of data mining and has been the
driving force for the development of algorithms that can both discover the associations
and allow inferences to be made, by the miner or a suitable domain expert, from the
discovered associations. This problem was first addressed by Agrawal, Imielinski and
Swami (1993) and by Agrawal and Srikant (1994) who introduced the Apriori algorithm
which was based on the downward closure principle: if a length k pattern is not frequent
in the database, then any length (k+1) super-pattern can never be frequent, for discovery
of such associations. Since that time there has been considerable research conducted in
this field in the area of algorithmic development in an attempt to make the process more
efficient and thus more tractable when applied to the ever-increasing size of available
datasets. For a comprehensive survey on Association Mining see Ceglar and Roddick
(2006). This general area is concerned with intra-transaction associations (associations
between items in the same transaction) and imposes no ordering on the items that
constitute a transaction1. However inter-transaction associations (associations between
different transactions) can also provide further useful knowledge with respect to the
data being mined. For example it may be useful for a video rental outlet to know
that customers who hired “The Fellowship of the Ring” and “The Two Towers” in
one transaction also hired “Return of the King” in a later transaction. Moreover, these
temporal relationships might be used to predict future values in the data. The discovery
of these types of associations is generally called Sequential Pattern Mining.

This chapter surveys the field of sequential pattern mining and discusses the algo-
rithms that have been proposed to deal with the problem.

1Typically, in order to simplify the mining process, and with no loss of information, the items that
make up a transaction are sorted lexicographically.
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CHAPTER 2. SEQUENTIAL PATTERN MINING 5

2.1 The Sequential Pattern Mining Problem

The sequential pattern mining problem was first addressed by Agrawal and Srikant
(1995) and was defined to be:

“Given a database of sequences, where each sequence consists of a list of
transactions ordered by transaction time and each transaction is a set of
items, sequential pattern mining is to discover all sequential patterns with
a user-specified minimum support, where the support of a pattern is the
number of data-sequences that contain the pattern.”

Since this time there has been a growing number of researchers in this field and the
problem definition has been formulated in a number of ways. For example: Garofalakis,
Rastogi and Shim (1999) described it as

“Given a set of data sequences, the problem is to discover sub-sequences that
are frequent, i.e. the percentage of data sequences containing them exceeds
a user-specified minimum support”,

while Masseglia, Poncelet and Teisseire (2000) describe it as

“. . . the discovery of temporal relations between facts embedded in a database”,

and Zaki (2001b) as

“. . . to discover a set of attributes, shared across time among a large number
of objects in a given database.”

Since there are varied forms of dataset (transactional, streams, time series etc.) algo-
rithmic development in this area has been focused on the development and improvement
for (in the main) specific domain data which has included medical, telecommunications
(networks), defence, web, retailing (market-basket), and identification of plan failures.
In the majority of cases the data has been stored as transactional datasets and similar
techniques such as those used by association rule miners have been employed in the
discovery process. However, the data used for sequence mining is not limited to data
stored in overtly temporal or longitudinally maintained datasets – examples include
genome searching, web logs, alarm data in telecommunications networks, population
health data, etc. In such domains data can be viewed as a series of events, or episodes,
occurring at specific times and therefore the problem becomes a search for collections
of events that occur frequently together. Mannila, Toivonen and Verkamo (1997) de-
scribed the problem as
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“Sequences of events describing the behavior and actions of users or systems
can be collected in several domains. We consider the problem of discovering
frequently occurring episodes in such sequences. ... Once such episodes are
known, one can produce rules for describing or predicting the behavior of
the sequence.”

These types of dataset require different types of algorithms and will be described sep-
arately from those algorithms that are based on the more general transaction oriented
datasets. Regardless of the format of the dataset, sequence mining algorithms can be
categorized into one of three broad classes that perform the task (Pei, Han and Wang,
2002):

1. Apriori-based

(a) horizontal database format

(b) vertical database format

2. Projection-based

(a) pattern growth

Improvements in algorithms and algorithmic development in general, has followed
similar developments in the related field of association rule mining and have been
motivated by the need to process more data at an increased speed with lower overheads.

The remainder of this chapter will begin with a discussion on the types of constraints
used in sequence mining and counting techniques that are used as measures against user
designated supports followed by a survey of the algorithms that are or have been used
in sequence mining. This survey will be based firstly on the type of dataset that each
algorithm is associated with and secondly, within that designation, on the broad class
to which they belong. This will be followed by discussions on extensions dealing with
closed, approximate and parallel algorithms and the area of incremental algorithms
after which there will be a discussion of those algorithms that deal with streaming
data. The survey will be completed with a discussion on other methods that have been
employed and areas of related research.

2.2 Types of Constraints

Constraints to guide the mining process have been employed by many algorithms, not
only in sequence mining but also in association mining (Fu and Han, 1995; Chakrabarti,
Sarawagi and Dom, 1998; Bayardo and Agrawal, 1999; Ceglar, Roddick and Calder,
2003), but in general constraints that are imposed on sequential pattern mining, re-
gardless of the algorithms employed, can be categorized into one of seven main types2

2This is not a complete list but categorises those that are of most interest and are currently in use.
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(Pei et al., 2002). Other types of constraints will be elaborated as they arise, but in
general a constraint C on a sequential pattern α is a boolean function of the form C(α).
For the constraints listed below only the duration and gap constraints rely on a support
threshold (min sup) to confine the mined patterns whereas for the others, whether or
not a given pattern satisfies a constraint can be determined by the pattern itself. These
constraints rely on certain notions that are elaborated below.

Let I = {x1, . . . , xn} be a set of items, each possibly being associated with a set
of attributes, such as value, price, or period, etc. The value on attribute A of item x

is denoted as x.A. An itemset is a non-empty subset of items, and an itemset with k
items is called a k-itemset. A sequence α = 〈X1 . . . Xl〉 is an ordered list of itemsets.
An itemset Xi (1 ≤ i ≤ l) in a sequence is called a transaction. A transaction Xi may
have a special attribute, times-tamp, denoted as Xi.time, which registers the time when
the transaction was executed. The number of transactions in a sequence is called the
length of the sequence. A sequence α with length l is called an l -sequence, denoted
as len(α) = l. The i -th itemset is denoted as α[i]. A sequence α = 〈X1 . . . Xn〉 is
called a subsequence of another sequence β = 〈Y1 . . . Ym〉 (n ≤ m), and β a super-

sequence of α, denoted as α v β, if there exist integers 1 ≤ i1 < . . . < in ≤ m such
that X1 ⊆ Yi1 , . . . , Xn ⊆ Yin . A sequence database SDB is a set of 2-tuples (sid, α),
where sid is a sequence-id and α a sequence. A tuple (sid, α) in a sequence database
SDB is said to contain a sequence γ if γ is a subsequence of α. The number of tuples
in a sequence database SDB containing sequence γ is called the support of γ, denoted
as sup(γ).(Pei et al., 2002)

1. Item Constraint: This type of constraint indicates which type of items, singular
or groups, are to be included or removed from the mined patterns. The form is
Citem(α) ≡ (ϕi : 1 ≤ i ≤ len(α), α[i] θ V ), or Citem(α) ≡ (ϕi : 1 ≤ i ≤
len(α), α[i] ∩ V 6= ∅), where V is a subset of items, ϕ ∈ {∀,∃} and θ ∈ {⊆,*,⊇
,+,∈, /∈} (Pei et al., 2002).

For example, when mining sequential patterns from medical data a user may only
be interested in patterns that have a reference to a particular hospital. If H is
the set of hospitals, the corresponding item constraint is Chospital(α) ≡ (∀i : 1 ≤
i ≤ len(α), α[i] ⊆ H).

2. Length Constraint: This type of constraint specifies the length of the patterns
to be mined either as the number of elements or the number of transactions that
comprises the pattern. This basic definition may also be modified to include only
unique or distinct items.

For example, a user may only be interested in discovering patterns of say length
20 elements that occur in the analysis of a sequence of web log clicks. This would
be expressed as a length constraint Clen(α) ≡ (len(α) ≤ 20).
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3. Model-based Constraint: These types of constraints are those which look for
patterns that are either sub-patterns or super-patterns of some given pattern. A
super-pattern constraint is in the form of Cpat(α) ≡ (∃γ ∈ P s.t. γ v α), where
P is a given set of patterns. Simply stated this says find patterns that contain a
particular set of patterns as sub-patterns (Pei et al., 2002).

For example, an electronics shop may employ an analyst to mine their transaction
database and in doing so may be interested in all patterns that contain first buying
a PC then a digital camera and a photo-printer together. This can be expressed
as Cpat(α) ≡ 〈(PC)(digital camera, photo-printer)〉 v α.

4. Aggregate Constraint: These constraints are imposed on an aggregate of items
in a pattern, where the aggregate function can be, avg, min, max, etc.

For example, the analyst in the electronics shop may also only be interested in
patterns where the average price of all the items is greater than $500.

5. Regular Expression Constraint: This type of constraint CRE are constraints
specified using the established set of regular expression operators – disjunction,
Kleene closure etc. For a sequential pattern to satisfy a particular regular ex-
pression constraint CRE it must be accepted by its equivalent deterministic finite
automata.

For example, to discover sequential patterns about a patient who was admitted
with measles and was given a particular treatment a regular expression of the form
Admitted(Measles | German Measles)(Treatment A | Treatment B | Treatment C)
where “|” indicates disjunction.

6. Duration Constraint: For these constraints to be defined, each and every trans-
action in the sequence database or each item in a temporal sequence must have
an associated time-stamp. The duration is determined by the time difference
between the first and last transaction, or first and last item, in the pattern
and can be either longer or shorter than a given period. Formally, a dura-
tion constraint is in the form of Dur(α)θ ∆t, where θ ∈ {≤,≥} and ∆t is
a given integer. A sequence α satisfies the constraint (checking satisfaction is
achieved by examining the SDB) if and only if |{β ∈ SDB|∃1 ≤ i1 < · · · <
ilen(α) ≤ len(β) s.t. α[1] v β[i1], . . . , α[len(α)] v β[ilen(α)], and (β[ilen(α)].time−
β[i1].time)θ ∆t}| ≥ min sup (Pei et al., 2002).

In algorithms that have temporal sequences as their input this type of constraint
is usually implemented as a ‘sliding window’ across the event set.

7. Gap Constraint: The patterns that are discovered using this type of constraint
are similarly derived from sequence databases or temporal sequences that include
time-stamps. The gap is determined by the time difference between adjacent
items, or transactions and must be longer or shorter than a given gap. Formally,
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a gap constraint is in the form of Gap(α)θ ∆t, where θ ∈ {≤,≥} and ∆t is a
given integer. A sequence α satisfies the constraint (to check the satisfaction of
this constraint the SDB must be examined) if and only if |{β ∈ SDB|∃1 ≤ i1 <

· · · < ilen(α) ≤ len(β) s.t. α[1] v β[i1], . . . , α[len(α)] v β[ilen(α)], and for all 1 <
j ≤ len(α), (β[ij ].time− β[ij−1].time)θ ∆t}| ≥ min sup (Pei et al., 2002).

2.3 Counting Techniques

For a sequence to be deemed interesting it is required to meet some criteria in relation
to the number of occurrences of it in the sequence with respect to any timing con-
straints that may have been imposed. As was indicated in the previous section only
two constraints deal with timing – duration and gap, and so for the purpose of this
discussion and with this in mind the following terminology will be used (modified from
Joshi, Karypis and Kumar (1999)).

• ms: maximum span – maximum allowed time difference between the latest and
earliest occurrences of events in the entire sequence.

• ws: event-set window size – maximum allowed time difference between the
latest and earliest occurrences of events in any event-set. Here the term event-set
is equivalent to the term transaction in Section 2.2
• xg : maximum gap – maximum allowed time difference between the latest oc-

currence of an event in and event-set and the earliest occurrence of an event in
its immediately preceding event-set.

• ng : maximum span – minimum required time difference between the earliest
occurrence of an event in and event-set and the latest occurrence of an event in
its immediately preceding event-set.

These four parameters can be used to define five different counting techniques which
can be divided into three groups. The first group CEVT (count event) searches for the
given sequence in the entire sequence timeline. The second group deals with counting
the number of windows (windows equate to the maximum span (ms)) in which the given
sequence occurs and consists of CWIN (count windows) and CMINWIN (count minimum
windows). The third group deals with distinct events within the window that is of
size ms (maximum span) and comprises CDIST (count distinct) and CDIST O (count
distinct with the possibility of overlap). The use of any of these methods depends on
the specific application area and on the users expertise in the domain of the area being
mined. Figure 2.1 shows the differences between the counting methods, and highlights
the need for careful consideration when choosing a counting method.
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Sequence Timeline Counting Method Number of Occurrences

for This Event

[Sequence Searched:(A)(B)]

[ms = 2 units]

A A B B B A B

1 2 3 4 5 6 7

A A B

CEVT 1

CWIN 6

CMINWIN 4

CDIST O 8

CDIST 5

Figure 2.1: A comparison of different counting methods – Joshi et al. (1999).

2.4 Apriori-based Algorithms

The Apriori family of algorithms has typically been used to discover intra-transaction
associations and then to generate rules about the discovered associations, however the
sequence mining task is defined as discovering inter-transaction associations – sequen-
tial patterns – across the same, or similar data. It is not surprising then that the
first algorithms to deal with this change in focus were based on the Apriori algorithm
(Agrawal and Srikant, 1994) using transactional databases as their data source. The
next section will outline the problem statement and notation that is typical of these
types of algorithm. Before each section describing the algorithms a summary of the
database format will be given.
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2.4.1 Problem Statement and Notation

The problem of mining sequential patterns can be stated as follows:

Let I = {i1, i2, . . . , im} be a set of literals called items which comprise the alphabet.
An event is a non-empty unordered collection of items. It is assumed without loss
of generality that items of an event are sorted in lexicographic order. A sequence
is an ordered list of events. An event is denoted as (i1, i2, . . . , ik), where ij is an
item. A sequence α is denoted as 〈α1 → α2 → · · · → αq〉, where αi is an event.
A sequence with k-events (transactions) (k =

∑
j |αj |) is called a k-sequence. For

example, 〈B → AC〉 is a 3-sequence. A sequence 〈α1 → α2 . . .→ αn〉 is a subsequence
of another sequence 〈β1 → β2 . . . → βm〉 if there exist integers i1 < i2 < . . . < in

such that α1 ⊆ βi1 , α2 ⊆ βi2 , . . . , αn ⊆ βin . For example the sequence 〈B → AC〉 is a
subsequence of 〈AB → E → ACD〉, since B ⊆ AB and AC ⊆ ACD, and the order of
events is preserved. However, the sequence AB → E is not a subsequence of ABE and
vice versa.

We are given a database D of input-sequences where each input-sequence in the
database has the following fields: sequence-id, event-time and the items present in the
event. It is assumed that no sequence has more that one event with the same time-
stamp, so that the time-stamp may be used as the event identifier. In a general sense
the support or frequency of a sequence, denoted σ(α,D), is defined as the total number
of input-sequences in the database D that contain α. This general definition has been
modified as algorithmic development has progressed and different methods for calculat-
ing support have been introduced, a summary of which is included in Section 2.3. Given
a user-specified threshold called the minimum support (denoted min supp), a sequence
is said to be frequent if it occurs more than min supp times and the set of frequent
k-sequences is denoted as Fk. Further a frequent sequence is deemed to be maximal
if it is not a subsequence of any other frequent sequence. The task then becomes to
find all frequent sequences from a database D of input-sequences and a user supplied
min supp.

This constitutes the problem definition for all sequence mining algorithms whose
data are located in a transaction database or are transaction datasets. Further ter-
minology, that is specific to an algorithm or set of algorithms, will be elaborated as
required.
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2.4.2 Horizontal Database Format

Horizontal formatting means that the original data, Table 2.1(a), is sorted first by
Customer Id and then by Transaction Time which results in a transformed customer-
sequence database, Table 2.1(b), where the timestamps from Table 2.1(a) are used to
determine the order of events, which is used as the basis for mining. The mining is
then carried out using a breadth-first approach.

Table 2.1: Horizontal Formatting Data Layout – adapted from Agrawal and
Srikant (1995).

(a) Customer Transaction Database

Customer Id Transaction Time Items Bought

1 June 25 ’03 30
1 June 30 ’03 90

2 June 10 ’03 10, 20
2 June 15 ’03 30
2 June 20 ’03 40, 60, 70

3 June 25 ’03 30, 50, 70

4 June 25 ’03 30
4 June 30 ’03 40, 70
4 July 25 ’03 90

5 June 12 ’03 90

(b) Customer-Sequence version of the
Database

Customer Id Customer Sequence

1 〈 (30) (90) 〉
2 〈 (10 20) (30) (40 60 70) 〉
3 〈 (30 50 70) 〉
4 〈 (30) (40 70) (90) 〉
5 〈 (90) 〉

2.4.3 Horizontal Database Format Algorithms

2.4.3.1 AprioriAll, AprioriSome and DynamicSome

The first algorithms that were introduced were named AprioriAll, AprioriSome, and Dy-

namicSome and were developed by Agrawal and Srikant (1995) using a 5-stage process:

1. Sort Phase. This phase effectively transforms the dataset from the original trans-
action database (Table 2.1(a)) to a customer sequence database (Table 2.1(b))
by sorting the dataset by customer id and then by transaction time.

2. Litemset (large itemset) Phase. The function of this phase is to find the set
of all litemsets L (those that meet minimum support), which is in effect the
set of all large 1-sequences since this is just {〈l〉 | l ∈ L}. Also at this stage
optimisations for future comparisons are carried out by mapping the litemsets to
a set of contiguous integers. For example, if the minimum support was given as
25%, using the data from Table 2.1(b), a possible mapping for the large itemsets
is depicted in Table 2.2.
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Table 2.2: Large Itemsets and a possible mapping – Agrawal and Srikant (1995).

Large Itemsets Mapped To

(30) 1
(40) 2
(70) 3

(40 70) 4
(90) 5

3. Transformation Phase. Since there is a need to repeatedly determine which of a
given set of long sequences are contained in a customer sequence, each customer
sequence is transformed by replacing each transaction with the set of litemsets
contained in that transaction. Transactions that do not contain any litemsets
are not retained and a customer sequence that does not contain any litemsets is
dropped. The customer sequences that are dropped do however still contribute
to the total customer count. This is depicted in Table 2.3.

Table 2.3: The transformed database including the mappings – Agrawal and
Srikant (1995).

C Id Original Transformed After
Customer Sequence Customer Sequence Mapping

1 〈(30) (90)〉 〈{(30)} {(90)}〉 〈{1} {5}〉
2 〈(10 20) (30) (40 60 70)〉 〈{(30)} {(40), (70), (40 70)}〉 〈{1} {2, 3, 4}〉
3 〈(30 50 70)〉 〈{(30), (70)}〉 〈{1, 3}〉
4 〈(30) (40 70) (90)〉 〈{(30)} {(40), (70), (40 70)} {(90)}〉 〈{1} {2, 3, 4} {5}〉
5 〈(90)〉 〈{(90)}〉 〈{5}〉

4. Sequence Phase. This phase mines the set of litemsets to discover the sequences.
Three algorithms are presented for this discovery all of which make multiple
passes over the data. Each pass begins with a seed set for producing potential
large sequences (candidates) and then the support for these candidates is calcu-
lated during the pass. Those that do not meet the minimum support threshold
are pruned and then those that remain become the seed set for the next pass.
The process begins with the large 1-sequences and terminates when either no
candidates are generated or no candidates meet the minimum support criteria.

5. Maximal Phase. This is designed to find all maximal sequences among the set
of large sequences. Although this phase is applicable to all of the algorithms,
the AprioriSome and DynamicSome combine this with the sequence phase to save
time by not counting non-maximal sequences. The process is similar in nature
to the process of finding all subsets of a given itemset and as such the algorithm
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for performing this task is also similar. An example can be found in Agrawal and
Srikant (1994).

The difference in the three algorithms results from the methods of counting the
sequences produced. Although all are based on the Apriori algorithm (Agrawal and
Srikant, 1994) the AprioriAll algorithm counts all of the sequences whereas the Apriori-

Some and DynamicSome are designed to only produce maximal sequences and therefore
can take advantage of this by first counting longer sequences and only counting shorter
ones which are not contained in longer ones. This is done by utilising a forward phase
which finds all sequences of a certain length and a backward phase which finds the
remaining long sequences not discovered during the forward phase.

This seminal work, however, had some limitations:

• Given that the output was the set of maximal frequent sequences, some of the
inferences (rules) that could be made could be construed as being of no real value.
For example a retail store would probably not be interested in knowing that a
customer purchased product ‘A’ and then two years later purchased product ‘B’.

• Items were constrained to appear in a single transaction limiting the inferences
available and hence the potential value that the discovered sequences could elicit.
In many domains it could be beneficial that transactions that occur within a
certain time window (the time between the maximum and minimum transaction
times) are viewed as a single transaction.

• Many datasets have a user-defined hierarchy associated with them and users may
wish to find patterns that exist not only at one level, but across different levels
of the hierarchy.

These limitations were addressed by the the algorithm called Generalised Sequential
Patterns or GSP.

2.4.3.2 GSP: Generalised Sequential Patterns

In order to address the shortcomings of the original algorithms the apriori model was
extended and resulted in the GSP (Generalised Sequential Patterns) algorithm (Srikant
and Agrawal, 1996). The extensions included time constraints (minimum and maximum
gap between transactions), sliding windows and taxonomies. The minimum and/or
maximum gap between adjacent elements was included to reduce the number of ‘trivial’
rules that may be produced. For example, a video store owner probably does not
care if someone hired “Fellowship of the Ring” and then a few years later hired “The
Two Towers”, but would if this sequence of events occurred within a few weeks. The
sliding window enhances the timing constraints by allowing elements of a sequential
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pattern to be present in a set of transactions that occur within the user-specified time
window. And finally the user-defined taxonomy (is-a hierarchy) which is present in
many datasets allows sequential patterns to include elements from any level in the
taxonomy.

The algorithm follows the classic candidate generation and prune paradigm where
each subsequent set of candidates is generated from seed sets from the previous frequent
pass (Lk−1) of the algorithm, where Lk is the set of frequent k -length sequences. This
is accomplished in two steps:

1. The join step. This is done by joining Lk−1 with Lk−1 in the following way. A
sequence s1 is joined with s2 if the subsequence obtained by removing the first
item of s1 is the same as the subsequence obtained by removing the last item
of s2. The candidate sequence is then generated by extending s1 with the last
item in s2 and the added item becomes a separate element if it was a separate
element in s2 or becomes part of the last element of s1 otherwise. For example
if s1 = 〈(1, 2) (3)〉 and for the first case s2 = 〈(2) (3, 4)〉 and the second case
s2 = 〈(2) (3) (4)〉 then after the join the candidate would be c = 〈(1, 2) (3, 4)〉
and c = 〈(1, 2) (3) (4)〉 respectively.

2. The prune step. Candidates are deleted if they contain a contiguous (k − 1)
subsequence whose support count is less than the minimum specified support. A
more rigid approach can be taken when there is no max-gap constraint resulting
in any subsequence without minimum support being deleted.

The algorithm terminates when there are no frequent sequences from which to generate
seeds, or there are no candidates generated.

To reduce the number of candidates that need to be checked an adapted version of
the hash-tree data structure used by Agrawal and Srikant (1994) was adopted. The
nodes of the hash-tree either contain a list of sequences as a leaf node or a hash table as
an interior node. Each non-empty bucket of a hash table in an interior node points to
another node. By utilising this structure, candidate checking is then performed using
either a forward or backward approach. The forward approach deals with successive
elements as long as the difference between the end time of the element just found and the
start time of the previous element is less than max-gap. If this difference is more than
max-gap then the algorithm switches to the backward approach where the algorithm
moves backward until either the max-gap constraint between the element just pulled
up and the previous element is satisfied or the root is reached. The algorithm then
switches to the forward approach and this process continues, switching between the
forward and backward approaches until all elements are found. These improvements
in counting and pruning candidates led to improved speed over that of AprioriAll and
although the introduction of constraints improved the functionality of the process (from
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a user perspective) a problem still existed with respect to the number of patterns that
were generated. This is an inherent problem facing all types of algorithms and solutions
that involve adding further constraints have typically been used. The major types of
constraints that were added have already been discussed in Section 2.2.

2.4.3.3 PSP

The PSP algorithm by Masseglia, Cathala and Poncelet (1998) was inspired by GSP,
but has improvements which make it possible to perform retrieval optimizations. The
process uses transactional databases as its source of data and a candidate generation
and scan approach for the discovery of frequent sequences. The difference lies in the way
that the candidate sequences are organized. GSP and its predecessors use hash tables at
each internal node of the candidate tree, whereas the PSP approach organizes the candi-
dates in a prefix-tree according to their common elements which results in less memory
overhead and faster retrievals. The tree structure used in this algorithm only stores
initial sub-sequences common to several candidates only once and the terminal node of
any branch stores the support of the sequence to any considered leaf inclusively. Adding
to the support value of candidates is performed by navigating to each leaf in the tree
and then simply incrementing the value, which is much faster than the GSP approach.
A comparison of the tree structures is illustrated in Figure 2.2 using the following set
of frequent 2-sequences: L2 = 〈(10) (30)〉, 〈(10) (40)〉, 〈(30) (20)〉, 〈(30) (40)〉, 〈(40 10)〉.
The illustration shows the state of the trees after generating the 3-candidates and
clearly shows the reduced overhead of the PSP approach.

root

10

30

20 40

40

10

20 30

20

40

10

30 40

The dashed line indicates items that

originated in the same transaction

root

10 40

〈(10) (40 10)〉
〈(10) (30) (20)〉
〈(10) (30 40)〉

〈(40 10) (30)〉
〈(40 10) (40)〉

Figure 2.2: The prefix-tree of PSP (left tree) and the hash-tree of GSP (right
tree) showing storage after candidate-3 generation – Masseglia et al. (1998).
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2.4.3.4 SPIRIT: Sequential Pattern Mining with Regular Expression Con-

straints

To enable users to take advantage of a predefined requirement for output, a family
of algorithms termed SPIRIT (Sequential Pattern mIning with Regular expressIon
consTraints) were developed by Garofalakis, Rastogi and Shim (1999). The choice
of regular expression constraints was due to their expressiveness in allowing families
of sequential patterns to be defined and the simple natural syntax that they provide.
Apart from the reduction of potentially useless patterns the algorithms also gained
significant performance by ‘pushing’ the constraints inside the mining algorithm, that
is using the constraint-based pruning followed by support-based pruning and storing the
regular expressions in finite state automata. This technique reduces to the candidate
generation and pruning of GSP when the constraint, C, is anti-monotone, but when
this is not so (as is the case of the regular expressions used by SPIRIT) a relaxation of
C, that is a weaker or less restrictive constraint C′, is used. Varying levels of relaxation
of C gave rise to the SPIRIT family of algorithms that are ordered in the following way:
SPIRIT(N)(“N” for Naive), employs the weakest relaxation, followed by SPIRIT(L)(“L”
for Legal), SPIRIT(V)(“V” for Valid), and SPIRIT(R)(“R” for Regular). This decrease
in relaxation impacts on the effectiveness of both the constraint-based and support-
based pruning but has the potential to increase the performance of the algorithm by
restricting the amount of candidates that are generated during each pass of the pattern
mining loop.

2.4.3.5 MFS: Maximal Frequent Sequences

Zhang, Kao, Yip and Cheung (2001) proposed the algorithm MFS (Maximal Frequent
Sequences) which uses a modified version of the GSP candidate generation function
as its core candidate generation function. This modification allows for a significant
reduction in any I/O requirements since the algorithm only checks candidates of various
lengths in each database scan. The authors call this a successive refinement approach.
The algorithm first computes a rough estimate of the set of all frequent sequences by
using the results of a previous mining run if the database has been updated since the
last mining run, or by mining a small sample of the database using GSP. This set of
varying length frequent sequences is then used to generate the set of candidates which
are checked against the database to determine which are in fact frequent. The maximal
of these frequent sequences are kept and the process is repeated only on these maximal
sequences again checking any candidates against the database. The process terminates
when no more new frequent sequences are discovered in an iteration. The major source
of efficiency over GSP is that the supports of longer sequences can be checked early in
the process.
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Figure 2.3: Hackle-tree for C((C(A+BC)D)+ (A+B+C)∗)C – Albert-Lorincz
and Boulicaut (2003b).

2.4.3.6 RE-Hackle: Regular Expression-Highly Adaptive Constrained Lo-

cal Extractor

Using regular expressions and minimum frequency constraints combines both anti-
monotonic (frequency) and non-anti-monotonic (regular expressions) pruning tech-
niques and has already been discussed for the SPIRIT family of algorithms and is
therefore not a new concept. The RE-Hackle algorithm (Regular Expression-Highly
Adaptive Constrained Local Extractor) by Albert-Lorincz and Boulicaut (2003b), how-
ever, uses a hierarchical representation of Regular Expressions which it stores in a
Hackle-tree rather than the Finite State Automaton used in the SPIRIT algorithms.
They build their RE-constraints for mining using RE’s built over an alphabet using
three operators: union (denoted +), concatenation (denoted by ◦k, ◦o being the usual
concatenation) and Kleeene closure (denoted ∗). A Hackle-tree, see Figure 2.3, is a form
of Abstract Syntax Tree that encodes the structure of a RE-constraint and is struc-
tured as follows. Each inner node contains a operator and the leaves contain atomic
sequences, in this manner the tree reflects the way in which the atomic sequences are
assembled from the unions, concatenations and Kleene closures to form the the initial
RE-constraint.

After the construction of the RE-constraint and the Hackle-tree has been built (this
is termed the Extraction phrase) the extraction of begins. Extraction functions are
applied to the nodes of the Hackle-tree and return the candidate sequences that need
to be counted, those that are deemed to be frequent are used for the next generation.
This is done by creating a new extraction phrase and a new Hackle-tree is then built and
the process resumes. The process terminates when no more candidates are discovered.
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2.4.3.7 MSPS: Maximal Sequential Patterns using Sampling

In the MSPS (Maximal Sequential Patterns using Sampling) algorithm Luo and Chung
(2004) combine the approach taken in GSP and the supersequence frequency pruning
for mining maximal frequent sequences. Supersequence frequency based pruning is
such that any subsequence of a frequent sequence is also frequent and therefore can be
pruned from the set of candidates. This gives rise to the classic bottom-up breadth-first
search strategy that includes, from the second pass over the database, mining a small
random sample of the database to generate local maximal frequent sequences from
the sample. After these have been verified in a top-down fashion against the original
database, so that the longest frequent sequences covered by them can be collected,
the bottom-up search is continued. In addition the authors use a signature technique
to overcome any problems that may arise when a set of k -sequences will not fit into
memory and candidate generation is required. The sampling that occurs is related
to the work of Toivonen (1996) who used a lowered minimum support when mining
the sample resulting in less chance that a frequent itemset is missed. In this work to
make sampling more efficient, a theoretical method based on statistics to adjust the
user-specified minimum support is used. The counting approach is similar to the PSP

approach in that a prefix tree is used, however the tree used in this algorithm differs
in the fact that it is used to count candidates of different sizes and the size of the tree
is considerably smaller because of the supersequence frequency based pruning. The
tree also has an associated bit vector whose size is that of the number of unique single
items in the database where each position is initialised to zero. Setting the bit vector
up to assist in counting requires that as each candidate is inserted into the prefix tree
its corresponding bit is set to one. As each customer sequence is inserted into the
tree it is checked against the bit vector first and those items that do not occur (the
bit is set to zero) are trimmed accordingly. Figure 2.4 illustrates a Prefix tree for an
incoming customer sequence of ABCD – ADEFG – B – DH trimmed against a bit
vector of (10111001). The bit vector is derived as such, since the database contains
the alphabet A,B,C,D,E,F,G,H, but there are no candidates containing B,F, and G and
therefore should be ignored during counting. Each node may have two types of children
S-extension (the child starts a new itemset) and I-extension (the child is in the same
itemset with the item represented by its parent node). S-extensions are represented by
a dashed line and I-extensions by a solid line.
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Candidates:
1) AC
2) AD
3) A – A
4) A – E
5) CH
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7) ADE
8) AD – A
9) D – AE
10) D – A – H

Figure 2.4: A Prefix Tree of MSPS – Luo and Chung (2004). The labels on the
edges represent recursive calls on segments of the trimmed customer sequence.

2.4.4 Vertical Database Format

Algorithmic development in the sequence mining area, to a large extent, has mirrored
that in the Association Rule Mining field and as improvements in performance were
required they came about, in the first instance, by employing a depth-first approach
to the mining, and later by using pattern growth methods (see Section 2.5). This shift
required that the data be organised in an alternative fashion, which is called a vertical
database format where the rows of the database consist of object-timestamped pairs
associated with an event. This makes it easy to generate idlists for each event that
consist of the object-timestamp rows of the events thus enabling all frequent sequences
to be enumerated via simple temporal joins of the idlists. An example of this type of
format is shown in Tables 2.4(a) and 2.4(b). Researchers such as Yang, Wang, Yu and
Han (2002) have recognised that these methods generally perform better when the data
is memory-resident and when the patterns are long, but also that the generation and
counting of candidates becomes much easier. This shift in data layout brought about
the introduction of algorithms based on a depth-first traversal of the search space and
at the same time there was an increased focus on incorporating constraints into the
mining process. This is due in part to the improvement in processing time but also as
a reaction to the need to reduce the number of results.
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Table 2.4: Vertical Formatting Data Layout – Zaki (2001b).

(a) Input-Sequence Database

Sequence Id Time Items

1 10 C D
1 15 A B C
1 20 A B F
1 25 A C D F

2 15 A B F
2 20 E

3 10 A B F

4 10 D G H
4 20 B F
4 25 A G H

(b) Id-Lists for the Items

A B D F
SID EID SID EID SID EID SID EID

1 15 1 15 1 10 1 20
1 20 1 20 1 25 1 25
1 25 2 15 4 10 2 15
2 15 3 10 3 10
3 10 4 20 4 20
4 25 20

SID: Sequence Id
EID: Time

2.4.5 Vertical Database Format Algorithms

2.4.5.1 SPADE: Sequential Pattern Discovery using Equivalence Classes

The SPADE (Sequential PAttern Discovery using Equivalence classes) algorithm (Zaki,
2001b) and its variant cSPADE (constrained SPADE) (Zaki, 2000) use combinatorial
properties and lattice based search techniques and allow constraints to be placed on
the mined sequences.

Key features of SPADE include the layout of the database which is a vertical id-
list database format, the search space is decomposed into small pieces (sub-lattices)
that can be processed independently in main memory thus enabling the database to
be scanned only three times or just once on some pre-processed data. Two search
strategies are proposed for finding sequences in the lattices:

1. Breadth-first search: the lattice of equivalence classes is explored in a bottom-up
manner and all child classes at each level are processed before moving to the next.

2. Depth-first search: all equivalence classes for each path are processed before mov-
ing to the next path.

Using the vertical id-list database in Table 2.4(b) all frequent 1-sequences can be
computed in one database scan. Computing the F2 can be achieved in one of two ways;
by pre-processing and collecting all 2-sequences above a user specified lower bound, or
by performing a vertical to horizontal transformation on the fly.

Once this has been completed the process continues by decomposing the 2-sequences
into prefix-based parent equivalence classes followed by the enumeration of all other fre-
quent sequences via either breadth-first or depth-first searches within each equivalence
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Table 2.5: Computing Support using temporal id-list joins – adapted from Zaki
(2001b).

(a) Intersect D and A, D and B, D and F .

D → A D → B D → F
SID EID SID EID SID EID

1 15 1 15 1 20
1 20 1 20 1 25
1 25 4 20 4 20
2 15 3 10
4 25

(b) Intersect D → B and

D → A, D → B and

D → F .

D → B → A D → BF
SID EID SID EID

1 20 1 20
1 25 4 20
4 25

(c) Intersect

D → B → A

and D → BF .

D → BF → A
SID EID

1 25
4 25

class. The enumeration of the frequent sequences can be performed by joining the
id-lists in one of three ways (assume that A and B are items and S is a sequence):

1. Itemset and Itemset : joining AS and BS results in a new itemset ABS.

2. Itemset and Sequence: joining AS with B → S results in a new sequence B → AS.

3. Sequence and Sequence: joining A → S with B → S gives rise to three possible
results: a new itemset AB → S, and two new sequences A → B → S and
B → A→ S. One special case occurs when A→ S is joined with itself resulting
in A→ A→ S

The enumeration process is the union or join of a set of sequences or items and once
these have been found their counts are calculated by performing an intersection of the
id-lists of the elements that comprise the newly formed sequence. By proceeding in
this manner it is only necessary to use the lexicographically first two subsequences at
the last level to compute the support of a sequence at a given level (Zaki, 1998). This
process for enumerating and computing the support for the sequence D → BF → A is
shown in Table 2.5 using the data supplied in Table 2.4(b).

The cSPADE algorithm (Zaki, 2000) is the same as SPADE except that it incorpo-
rates one or more of the the following syntactic constraints as checks during the mining
process:

1. Length or width limitations on the sequences; allows for highly structured data,
for example DNA sequence databases, to be mined without having the problem
of an exponential explosion in the number of discovered frequent sequences.

2. Minimum or maximum gap constraints on consecutive sequence elements to en-
able the discovery of sequences that occur after a certain minimum amount of
time, and no longer than a maximum time ahead.
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3. Applying a time window on allowable sequences, which means the entire sequence
must occur within the window. This differs from minimum and maximum gaps
in that it deals with the entire sequence not the time between sequence elements.

4. Incorporating item constraints. Since the generation of individual equivalence
classes is achieved easily by using the equivalence class approach and a vertical
database format, exclusion of an item becomes just a check for the particular
item in the class and the removal from those classes where it occurs. Further
expansion of these classes will never contain these items.

5. Finding sequences predictive of one or more classes (even rare ones). This is only
applicable to certain datasets (classification) where each input sequence has a
class label.

2.4.5.2 SPAM: Sequential Pattern Mining using a Bitmap Representation

SPAM (Sequential PAttern Mining using A Bitmap Representation) (Ayres, Flannick,
Gehrke and Yiu, 2002) uses a novel depth-first traversal of the the search space with ef-
fective pruning mechanisms and a vertical bitmap representation of the database which
enables efficient support counting. A vertical bitmap for each item in the database is
constructed while scanning the database for the first time and each bitmap has a bit
corresponding to each element of the sequences in the database. One potential limiting
factor on its usefulness is the SPAM algorithm requirement that all of the data fit into
main memory.

The candidates are stored in a structure called a lexicographic sequence lattice or
tree (the same type as used in PSP), which enables the candidates to be extended in
one of two ways: Sequence extended using an S-step process and Itemset extended
using an I-step process. This process is exactly the same as the approach taken in GSP

(Srikant and Agrawal, 1996) and PSP (Masseglia et al., 1998) in that an item becomes
a separate element if it was a separate element in the sequence it came from or becomes
part of the last element otherwise. These processes are carried out using the bitmaps
for the sequences or items in question by ANDing them to produce the result. The
S-step process requires that a transformed bitmap first be created by setting all bits
less than or equal to the item in question for any transaction to zero and all others to
one. This transformed bitmap is then used for ANDing with the item to be appended.
Table 2.6(c) and Table 2.6(d) illustrate this using the data in Table 2.6(a) and bitmap
representation in Table 2.6(b).

The method of pruning candidates is based on downward closure and is conducted
on both S-extension and I-extension candidates of a node in the tree using a depth-first
search which guarantees all nodes are visited. However, if the support for a sequence
s < min supp at a particular node then no more depth-first search is required on s due
to downward closure.
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Table 2.6: SPAM data representation – Ayres et al. (2002).

(a) Data sorted by CID and TID.

Customer ID (CID) TID Itemset

1 1 {a, b, c}
1 3 {b, c, d}
1 6 {b, c, d}

2 2 {b}
2 4 {a, b, c}

3 5 {a, b}
3 7 {b, c, d}

(b) Bitmap representation of the dataset in (a)

CID TID {a} {b} {c} {d}

1 1 1 1 0 1
1 3 0 1 1 1
1 6 0 1 1 1
- - 0 0 0 0

2 2 0 1 0 0
2 2 1 1 1 0
- - 0 0 0 0
- - 0 0 0 0

3 5 1 1 0 0
3 7 0 1 1 1
- - 0 0 0 0
- - 0 0 0 0

(c) S-Step processing

({a}) ({a})s {b} ({a}, {b})

1 0 1 0
0 1 1 1
0 1 1 1
0 1 0 0

0 S-step 0 1 result 0
1 −→ 1 & 1 −→ 0
0 process 1 0 0
0 1 0 0

1 0 1 0
0 1 1 1
0 1 0 0
0 1 0 0

(d) I-step processing

({a}, {b}) {d} ({a}, {b, d})

0 1 0
1 1 1
1 1 1
0 0 0

0 0 result 0
0 & 0 −→ 0
0 0 0
0 0 0

0 0 0
1 1 1
0 0 0
0 0 0

2.4.5.3 CCSM: Cache-based Constrained Sequence Miner

The CCSM (Cache-based Constrained Sequence Miner) algorithm of Orlando, Perego
and Silvestri (2004) uses a level-wise approach initially but overcomes most problems
associated with this type of algorithm. This is achieved by using k -way intersections
of id-lists to compute the support of candidates (the same as SPADE (Zaki, 2001b))
combined with a cache that stores intermediate id-lists for future reuse.

The algorithm is similar to GSP (Srikant and Agrawal, 1996) because it adopts
a level-wise bottom-up approach in visiting the sequential patterns in the tree but it
differs since after extracting the frequent F1 and F2 from the horizontal database, this
pruned database is transformed into a vertical one resulting in the same configuration
as SPADE (Zaki, 2001b). The major difference is the use of a cache to store intermediate
id-lists for use in speeding up support counting. This is achieved in the following way.
When a new sequence is generated, and if a common prefix is contained in the cache,
then the associated id-list is reused and subsequent lines of the cache are rewritten.
This enables only a single equality join to be performed between the common prefix
and the new item, after which the result of the join is added to cache.
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2.4.5.4 IBM: Indexed Bit Map

The application goal of IBM (Indexed Bit Map for Mining Frequent Sequences) (Savary
and Zeitouni, 2005) is to find chains of activities that characterise a group of entities and
where the input can be composed of single items. Their approach consists of two phases
the first of which is data encoding and compression and the second is frequent sequence
generation which is itself comprised of candidate generation and support checking. Four
data structures are used for the encoding and compression as follows: A Bit Map that
is a binary matrix representing the distinct sequences, an SV vector to encode all of the
ordered combinations of sequences, an index on the Bit Map to facilitate direct access
to sequences and an NB table also associated with the Bit Map to hold the frequencies
of the sequences. The algorithm only makes one scan of the database to collect the
number of distinct sequences, their frequencies and the number of sequences by size and
in doing so allows for the computing of support for each generated sequence. Candidate
generation is conducted in the same manner as GSP (Srikant and Agrawal, 1996), PSP

(Masseglia et al., 1998) and SPAM (Ayres et al., 2002), except here there is only a need
to use the I-extension process since the data has been encoded to single item values.
Upon completion of candidate generation, support is determined by first accessing the
IBM at the cell where the size of the sequence in question is encoded and then using
the SV vector to determine if the candidate is contained in subsequent lines of the IBM.
The candidate is then accepted as frequent if the count is larger than a user specified
support. The process terminates under the same conditions as the other algorithms,
that is when either no candidates can be generated or there are no frequent sequences
obtained.

2.4.5.5 LAPIN-SPAM: Last Position Induction Sequential Pattern Mining

Yang and Kitsuregawa (2005) base LAPIN-SPAM (Last Position INduction Sequential
PAttern Mining) on the same principles as SPAM (Ayres et al., 2002) with the ex-
ception of the methods for candidate verification and counting. Whereas SPAM uses
many ANDing operations the authors of the LAPIN strategy avoid this by making the
observation that if the last position of item α is smaller than, or equal to, the position
of the last item in a sequence s, then item α cannot be appended to s as a (k+1)-length
sequence extension in the same sequence (Yang, Wang and Kitsuregawa, 2005). This
transfers similarly to the I-step extensions. In order to exploit this observation the al-
gorithm maintains an ITEM IS EXIST TABLE in which the last position information
is recorded for each specific position and during each iteration of the algorithm there
only needs to be a check into this table to ascertain whether the candidate is behind
the current position.
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2.4.6 Summary of Apriori-based Algorithms

Table 2.7: A summary of apriori-based algorithms.

Algorithm Name Author Year Notes

Candidate Generation: Horizontal Database Format

Apriori (All, Some, Dynamic

Some)

Agrawal and Srikant 1995

Generalised Sequential Patterns

(GSP)

Srikant and Agrawal 1996 Max/Min Gap,

Window, Taxonomies

PSP Masseglia, Cathala and

Poncelet

1998 Retrieval optimisations

Sequential Pattern mIning with

Regular expressIon consTraints

(SPIRIT)

Garofalakis, Rastogi

and Shim

1999 Regular Expressions

Maximal Frequent Sequences

(MFS)

Zhang, Kao, Yip and

Cheung

2001 Based on GSP, uses

Sampling

Regular Expression-Highly

Adaptive Constrained Local

Extractor (RE-Hackle)

Albert-Lorincz and

Boulicaut

2003 Regular Expressions,

similar to SPIRIT

Maximal Sequential Patterns

using Sampling (MSPS)

Luo and Chung 2004 Sampling

Candidate Generation: Vertical Database Format

Sequential PAttern Discovery

using Equivalence classes

(SPADE)

Zaki 2001 Equivalence Classes

Sequential PAttern Mining

(SPAM)

Ayres, Flannick, Gehrke

and Yiu

2002 Bitmap representation

LAst Position INduction

(LAPIN)

Yang and Kitsuregawa 2004 Uses last position

Cache-based Constrained

Sequence Miner (CCSM)

Orlando, Perego and

Silvestri

2004 k-way intersections,

cache

Indexed Bit Map (IBM) Savary and Zeitouni 2005 Bit Map, Sequence

Vector, Index, NB table

LAst Position INduction

Sequential PAttern Mining

(LAPIN-SPAM)

Yang and Kitsuregawa 2005 Uses SPAM, Uses last

position
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2.5 Projection-based Algorithms

It was recognised early on that the number of candidates that were generated using
Apriori type algorithms was exponential in number e.g. if there was one frequent
sequence that was 100 long then 2100 ≈ 1030 candidates had to be generated to find
such a sequence. Although methods have been introduced to alleviate this problem, for
example constraints, the candidate generation and prune method suffers greatly under
circumstances when the datasets are large. Another inherent problem is the repeated
scanning of the dataset to check a large set of candidates by some method of pattern
matching. The recognition of these problems in the first instance in Association Mining
gave rise to, in that domain, the frequent pattern growth paradigm and the FP-Growth

algorithm (Han and Pei, 2000). This was similarly recognised by researchers in the
sequence mining domain and algorithms were developed to exploit this methodology.

The frequent pattern growth paradigm is one which removes the need for the can-
didate generation and prune steps that occur in the Apriori type algorithms and does
so by compressing the database representing the frequent sequences into a frequent
pattern tree and then dividing this tree into a set of projected databases, which are
mined separately (Han and Kamber, 2001).

2.5.1 Pattern Growth

The sequence database shown in Table 2.8 will be used as a running example for both
FreeSpan and PrefixSpan.

Table 2.8: A sequence database, S, for use with examples for FreeSpan and Pre-
fixSpan – Pei et al. (2001).

Sequence id Sequence

10 〈a(abc)(ac)d(cf)〉
30 〈(ad)c(bc)(ae)〉
30 〈(ef)(ab)(df)cb〉
40 〈eg(af)cbc〉

2.5.1.1 FreeSpan: Frequent pattern-projected Sequential Pattern Mining

The authors of FreeSpan (Frequent pattern-projected Sequential Pattern Mining)
(Han, Pei, Mortazavi-Asl, Chen, Dayal and Hsu, 2000) submit that the aim of FreeSpan

is to integrate the mining of frequent sequences with that of frequent patterns and use
projected sequence databases to confine the search and growth of the subsequence
fragments (Han et al., 2000).
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By using projected sequence databases the method greatly reduces the generation
of candidate sub-sequences. The algorithm firstly generates the frequent 1-sequences,
L1, termed an f list, by scanning the sequence database, and then sorts them into
support descending order, for example from the sequence database in Table 2.8, f list
= 〈a : 4, b : 4, c : 4, d : 3, e : 3, f : 3〉. This set can be divided into six subsets: those
having item f , those having item e but no f , those having item d but no e or f , and
so on until b is reached. This is followed by the construction of a lower-triangular
frequent item matrix that is used to generate the length-2 sequential patterns and a
set of projected databases. Items that are infrequent such as g are removed and do
not take part in the construction of projected databases. The projected databases are
then used to generate length-3 and longer sequential patterns. This mining process is
outlined below (Han et al., 2000; Pei et al., 2001):

To find the sequential patterns containing only item a. This is achieved by
scanning the database once, and the two patterns that are found containing only item
a are 〈a〉 and 〈aa〉

To find the sequential patterns containing the item b but no item after

b in f list. By constructing the {b}-projected database and for a sequence α in S
containing item b a subsequence α′ is derived by removing from α all items after b in
f list. Next α′ is inserted into the {b}-projected database resulting in the {b}-projected
database containing the following four sequences: 〈a(ab)a〉, 〈aba〉, 〈(ab)b〉 and 〈ab〉. By
scanning the projected database one more time all frequent patterns containing b but
no item after b in f list are found, which are 〈b〉, 〈ab〉,〈ba〉, 〈(ab)〉.

Finding other subsets of sequential patterns. This is achieved by using the
same process as outlined above on the {c}-, {d}-, . . . , {f}-projected databases.

All of the single projected databases are constructed on the first scan of the origi-
nal database and the process outlined above is performed recursively on all projected
databases while there are still longer candidate patterns to be mined.

2.5.1.2 PrefixSpan

The authors of PrefixSpan (Prefix-projected Sequential Pattern Mining) (Pei, Han,
Mortazavi-Asl, Pinto, Chen, Dayal and Hsu, 2001) build on the concept of FreeSpan but
instead of projecting sequence databases its general idea is to examine only the prefix
subsequences and project only their corresponding postfix subsequences into projected
databases. Using the sequence database, S, in Table 2.8 with a min sup = 2 the mining
is as follows.

The length-1 sequential patterns are the same as the f list in FreeSpan, that is
〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 4, 〈d〉 : 3, 〈e〉 : 3, 〈f〉 : 3 and 〈pattern〉 : count is the sequence and
its associated frequency. Once again the complete set can be divided into six subsets
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according to the six prefixes, those having the prefix 〈a〉 to those having the prefix 〈f〉.
These are then used to gather those sequences that have them as a prefix. Using the
prefix a as an example, when performing this operation it is important to consider a
subsequence prefixed by the first occurrence of a, i.e in the sequence 〈(ef)(ab)(df)cb〉,
only the subsequence 〈( b)(df)cb〉 should be considered. ( b) means the last element in
the prefix, in this case a, together with b form an element.

The sequences in S containing 〈a〉 are next projected with respect to 〈a〉 to form
the 〈a〉-projected database, and then those with respect to 〈b〉 and so on. By way of
example the 〈b〉-projected database consists of four postfix sequences: 〈( c)(ac)d(cf)〉,
〈( c)(ae)〉, 〈(df)cb〉 and 〈 c〉. By scanning these projected databases all of the length-2
patterns having the prefix 〈b〉 can be found. These are 〈ba〉:2, 〈bc〉:3, 〈(bc)〉:3, 〈bd〉:2,
and 〈bf〉:2. This process is then conducted recursively by partitioning the patterns
as above to give those having prefix 〈ba〉, 〈bc〉 and so on, and these are mined by
constructing projected databases and mining each of them recursively. This done for
each of the remaining single prefixes, 〈c〉, 〈d〉, 〈e〉 and 〈f〉 respectively.

The major benefit of this approach is that, no candidate sequence needs to be
generated or tested that does not exist in a projected database, that is PrefixSpan only
grows longer sequential patterns from shorter frequent ones, thus making the search
space much smaller. This results in the major cost being the construction of the
projected databases, however this can be alleviated by two optimisations. The first,
by using a bi-level projection method to reduce the size and number of the projected
databases, and second a pseudo-projection method to reduce the cost when a projected
database can be wholly contained in main memory.

2.5.1.3 SLPMiner

The SLPMiner algorithm by Seno and Karypis (2002) follows the projection-based ap-
proach for generating frequent sequences but uses a length-decreasing support constraint
for the purpose of finding not only short sequences with high support but also long se-
quences with a lower support. To this end the authors extended their model introduced
for length-decreasing support in association rule mining (Seno and Karypis, 2001), to
use the length of a sequence not an itemset. This is formally defined as: Given a se-
quential database D and a function f(l)) that satisfies 1 ≥ f(l) ≥ f(l + 1) ≥ 0 for any
positive integer l, a sequence s is frequent if and only if σD(s) ≥ f(|s|). Under this
constraint a sequence can be frequent while its subsequences are infrequent so pruning
can not be solely performed using the downward closure principle and therefore three
types of pruning are introduced which are derived from knowledge about the length at
which an infrequent sequence becomes frequent. This knowledge about the increase in
length is called the smallest valid extension property or SVE and uses the fact that if
a line is drawn parallel to the x-axis at y = σD(s) until it intersects the support curve
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Figure 2.5: A typical length-decreasing support constraint and the smallest valid
extension (SVE) property – Seno and Karypis (2002).

then the length of the extended sequence is the minimum length the original sequence
must attain before it becomes frequent. Figure 2.5 shows both the length-decreasing
support function and the SVE property.

The first of the three methods of pruning is called sequence pruning and removes
certain sequences from the projected databases, which occur at every node in the prefix
tree. A sequence s can be pruned if the value of the length-decreasing function f(|s|+
|p|), where p is the pattern represented at a particular node, is greater than the value
of the support for p in the database D. The second method is called item pruning and
essentially removes some of the infrequent items from short sequences. Since the inverse
function of the length-decreasing support function yields the length of a particular
sequence, an item i can be pruned by determining if the length of a sequence plus the
length of the prefix at a node, |s| + |p|, is less than the value of the inverse function
of the support for the item i in the projected database D′ at the current node. The
third method called min-max pruning eliminates a complete projected database. This
is achieved by splitting the projected database into two subsets and determining if each
of them is too small to be able to support any frequent sequential patterns. If this is
the case then the entire projected database can be removed.

Although these pruning methods are elaborated for use with SLPMiner the authors
do concede that most of the methods can be incorporated into other algorithms and
cite PrefixSpan (Pei et al., 2001) and SPADE (Zaki, 2001b) as two possibilities.
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2.5.2 Summary of Pattern Growth Algorithms

Table 2.9: A summary of pattern growth algorithms.

Algorithm Name Author Year Notes

Pattern Growth

FREquEnt pattern-projected
Sequential PAtterN mining
(FreeSpan)

Han, Pei,
Mortazavi-Asl, Chen,
Dayal and Hsu

2000 Projected sequence
database

PREFIX-projected Sequential
PAtterN mining (PrefixSpan)

Pei, Han,
Mortazavi-Asl, Pinto,
Chen, Dayal and Hsu

2001 Projected prefix
database

Sequential pattern mining with
Length-decreasing suPport
(SLPMiner )

Seno and Karypis 2002 Length-decreasing
support

2.6 Temporal Sequences

The data used for sequence mining is not limited to data stored in overtly temporal
or longitudinally maintained datasets. Examples include genome searching, web logs,
alarm data in telecommunications networks, population health data etc. In such do-
mains data can be viewed as a series of events occurring at specific times and therefore
the problem becomes a search for collections of events that occur frequently together.
Solving this problem requires a different approach, and several types of algorithm have
been proposed for different domains.

2.6.1 Problem Statement and Notation for Episode and Event-based

Algorithms

The first algorithmic framework developed to mine datasets that were deemed to be
episodic in nature was introduced by Mannila, Toivonen and Verkamo (1995). The
task addressed in this work was to find all episodes that occur frequently in an event
sequence, given a class of episodes and an input sequence of events. An episode was
defined to be:

“... a collection of events that occur relatively close to each other in a given
partial order, and ... frequent episodes as a recurrent combination of events”
(Mannila et al., 1995)

The notation used is as follows.

E is a set of event types and an event is a pair (A, t), where A ∈ E is an event type
and t is an integer (time / occurrence) of the event. There are no restrictions on the
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number of attributes that an event type may contain, or be made up of, but the original
work only considered single values with no loss of generality. An event sequence s on E

is a triple (s, Ts, Te), where s = 〈(A1, t1), (A2, t2), . . . , (An, tn)〉 is an ordered sequence
of events such that Ai ∈ E for all i = 1, . . . , n, and ti ≤ ti+1 for all i = 1, . . . , n − 1.
Further Ts < Te are integers, Ts is called the starting time and Te the ending time, and
Ts ≤ ti < Te for all i = 1, . . . , n.

For example Figure 2.6 depicts the event sequence s = (s, 29, 68), where s =
〈(A, 31), (F, 32), (B, 33), (D, 35), (C, 37), . . . , (F, 67)〉.

In order for episodes to be considered interesting they must occur close enough in
time, which can be defined by the user through a time window of a certain width. These
time windows are partially overlapping slices of the event sequence and the number of
windows that an episode must occur in to be considered frequent, min freq, is also
defined by the user. Notationally a window on event sequence S = (s, Ts, Te) is an
event sequence w = (w, ts, te) where ts < Te , te > Ts and w consists of those pairs
(A, t) from s where ts ≤ t < te. The time span te− ts is called the width of the window
w denoted width(w). Given an event sequence s and an integer win, the set of all
windows w on s such that width(w) = win is denoted by W(s,win). Given the event
sequence s = (s, Ts, Te) and window width win the number of windows in W(s,win) is
Te − Ts + win − 1.

An episode ϕ = (V,≤, g) is a set of nodes V , a partial order ≤ on V , and a mapping
g : V → E associating each node with an event type. The interpretation of an episode
is that it has to occur in the order described by ≤.

There are two types of episodes considered:

Serial – where the partial order relation ≤ is a total order resulting in for example
an event A preceding an event B which precedes event C. This is shown in
Figure 2.7(a).

Parallel – where there are no constraints on the relative order of events, that is if the
partial order relation ≤ is trivial: (x � y ∀ x 6= y). This is shown in Figure 2.7(b).

The frequency of an episode is defined to be the number of windows in which the
episode occurs. That is, given an event sequence s and a window width win, the

30 35 40 45 50 55 60 65

AFB D CEAB E F CDF E ABE CADAEB D F

Figure 2.6: An example event sequence and two windows of width 7.
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frequency of an episode ϕ in s is:

fr(ϕ, s,win) =
|{w ∈ W(s,win)|ϕ occurs in w}|

|W(s,win)|

So given a frequency threshold min freq, ϕ is frequent if fr(ϕ, s,win) ≥ min fr . The
task is to discover all frequent episodes (serial or parallel) from a given class E of
episodes.

2.6.2 WINEPI

The algorithm named WINEPI was introduced by Mannila et al. (1995) and its task was:
given an event sequence s, a set ε of episodes, a window width, win, and a frequency
threshold min fr, find the set of frequent episodes F with respect to s, win and min freq
denoted as F(s, win, min fr). It follows a traditional levelwise (breadth-first) search
starting with the general episodes (one event). At each subsequent level the algorithm
first computes a collection of candidate episodes, checks their frequency against min fr
and if it is greater it is added to a list of frequent episodes. This cycle continues until
there are no more candidates generated or no candidates meet the minimum frequency.
This is a typical Apriori-like algorithm under which the downward closure principal
holds – if α is frequent then all sub-episodes β � α are frequent.

In order to recognise episodes in sequences two methods are necessary; one for
parallel episodes and one for serial episodes. However since both of these methods
share a similar feature, namely that two adjacent windows are typically very similar to
each other, the recognition can be done incrementally. For parallel episodes a count is
maintained that indicates how many events are present in any particular window and
when this count reaches the length of episode (at any given iteration of the algorithm)
the index of the window is saved. When the count then decreases, indicating that the
episode is not entirely in the window and occurrence field is incremented by the number
of windows in which the episode was fully contained. Serial episodes are recognised
using state automata that acccept the candidate episodes and ignore all other input
(Mannila et al., 1995). A new instance of the automata is initialised for each serial

A B C

(a)

C

B

A

(b)

Figure 2.7: Depiction of a serial and parallel episode – Mannila et al. (1995).
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episode every time the first event appears in the window, and the automata is removed
when this same event leaves the window. To count the number of occurrences an
automata is said to be in the accepting state when the entire episode is in the window
and each time this occurs the automata is removed and its window index is saved. When
there are no automata left for the particular episode the occurrence is incremented by
the number of saved indexes.

A following paper by Mannila and Toivonen (1996) extended this work by only
considering minimal occurrences of episodes, which are defined as follows. Given an
episode ϕ and an event sequence s, then the interval [ts, te) is a minimal occurrence of
ϕ in s if (1) ϕ occurs in the window w = (w, ts, te) on s, and if (2) ϕ does not occur in
any proper subwindow on w, that is not in any window w′ = (w′, t′s, t

′
e) on s such that

ts ≤ t′s, t′e ≤ te and width(w′) < width(w).

The algorithm MINEPI that took advantage of this new formalism follows the same
basic principles as WINEPI with the exception that minimal occurrences of candidate
episodes are located during the candidate generation phase of the algorithm. This is
performed by selecting from a candidate episode ϕ two subepisodes ϕ1 and ϕ2 such
that ϕ1 contains all events of ϕ except the last one and ϕ2 contains all events except
the first one. From these two subepisodes the minimal occurrences of ϕ are found using
the following specification (Mannila and Toivonen, 1996):

mo(ϕ) = {[ts, ue) | there are [ts, te) ∈ mo(ϕ1) and [us, ue) ∈ mo(ϕ2)

such that ts < us, te < ue and [ts, ue) is minimal}

These minimal occurrences are then used to obtain confidences with respect to episode
rules without the need to rescan the data. Both of these algorithms and also algorithms
to perform the task of rule generation were brought together in a paper published by
Mannila, Toivonen and Verkamo in 1997. Typically the WINEPI produces rules that
are like those of Association Rules for example: if ABC is a frequent sequence then
AB ⇒ C (confidence γ) simply states that if A occurs followed by B then some
time later C occurs. The MINEPI and its new formalism of episodes allows for more
useful rule formulations for example: “Department Home Page”, “Semester I 2005”
[15s]⇒ “Classes in Semester I 2005” [30s] (confidence 0.83). This is read as if a person
navigated to the Department Home Page followed by the Semester I page within 15
seconds then within the next 30 seconds they would navigate to the Semester I Classes
page 83% of the time. These algorithms represent the seminal work in the field of
episode detection in linear temporal sequences in the data mining domain.
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Table 2.10: Vertical layout of the event sequences for the PROWL algorithm –
Huang et al. (2004).

Event Time List Projected Window List

A 1, 4, 7, 8, 11, 14 2, 5, 8, 9, 12, 15
B 3, 6, 9, 12, 16 4, 7, 10, 13
C 2, 10, 15 3, 11, 16
D 5, 13 6, 14

2.6.3 PROWL

Huang, Chang and Lin (2004) introduced the algorithm PROWL (Projected Window
Lists) to mine inter-transaction rules and used the term frequent continuities to dis-
tinguish their rules from those of intra-transaction or association rules. Further to this
they introduced the symbol “∗” for the don’t care position in the sequence to allow par-
tial periodicity. PROWL is a two phase algorithm for mining such frequent continuities
and utilises a projected window list and a depth first enumeration of the search space.

The definition of a sequence follows the pattern from Section 2.6.1 however, the
authors do not define the complete event sequence as a triple but only go as far as
defining it as a tuple of the form (tid, xi) where tid is a time instant and xi is an
event. The continuity pattern is defined to be a nonempty sequence with window W,
P = (p1, p2, . . . , pw) where p1 is an event and the others can either be events or the
∗ (don’t care) token. A continuity pattern is called an i-continuity or has length i if
exactly i positions in P contain an event. For example, {A,∗ ,∗ } is a 1-continuity and
{A,∗ , C} is a 2-continuity of length 2. They define the problem to be the discovery of
all patterns P with a window W where any subsequence of W in S supports P.

The algorithm uses a Projected Window List (PWL) to grow the sequences where
a PWL is defined as P = {e1, e2, . . . , ek} and P.PWL = {w1, w2, . . . , wk}, wi = ei +
1 for 1 ≤ i ≤ k. By concatenating each event with the events in the PWL longer
sequences can be generated and then the number of event in the concatenated list can
be checked against the given support and accepted as frequent if it equals or exceeds
the value. This process is applied recursively until the projected window lists become
empty or the window of a continuity is greater than the maximum window. Table 2.10
shows the vertical layout of the event sequences and Figure 2.8 shows the recursive
process for the continuity pattern {A}.

Support and confidence are defined in a similar fashion to association rule mining
and therefore rules can be formed which are an implication of the form X ⇒ Y ,
where X and Y are continuity patterns with window w1 and w2 respectively and the
concatenation X · Y is also a continuity pattern with window w1 + w2. This leads
to support being equal to the support of the concatenation divided by the number of
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transactions in the event sequence, and confidence as the support of the concatenation
divided by the support of either continuity depending on the required implication.

{A}

PA.list = {1, 4, 7, 8, 11, 14}
PA.PWL = {2, 5, 8, 9, 12, 15}

{A, A}
PAA.list = {8}

{A, B}
PAB .list = {9, 12}

{A, C}
PAC .list = {2}

{A,∗ }

PA∗ .list = {2, 5, 8, 9, 12, 15}
PA∗ .PWL = {3, 6, 9, 10, 13, 16}

{A,∗ , B}

PA∗B .list = {3, 6, 9, 16}
PA∗B .PWL = {4, 7, 10}

{A,∗ , C}
PA∗C .list = {10}

{A,∗ ,∗ }

PA∗∗ .list = {3, 6, 9, 10, 13, 16}
PA∗∗ .PWL = {4, 7, 10, 11, 14}

{A,∗ , B, A}
PA∗BA.list = {4, 7}

{A,∗ , B, C}
PA∗BC .list = {10}

{A,∗ ,∗ , A}
PA∗∗A.list = {4, 7, 11, 14}

{A,∗ ,∗ , C}
PA∗∗C .list = {10}

Figure 2.8: The recursive process for the continuity pattern {A} – Huang et al.
(2004).

2.6.4 Event-Oriented Patterns

Sun, Orlowska and Zhou (2003) treat the problem of mining sequential patterns by min-
ing temporal event sequences that lead to a specific event called a target event, rather
than finding all frequent patterns. They discuss two types of patterns; an Existence
pattern α with a temporal constraint T that is a set of event values and a Sequential
pattern β also with a temporal constraint T . Their method is used to produce rules of
the type r =

{
LHS

T→ e
}

, where e is a target event value and LHS is a pattern of type
α or β. T is a time interval that specifies both the temporal relationship between LHS
and e and also the temporal constraint pattern of LHS. To find the LHS patterns
they first locate all of the target events in the event sequence and create a timestamp
set by using a T-sized window extending back from the target event. The sequence
fragments (fi) that are created from this process is called the dataset of target event e
(see Figure 2.9 for an example).

The support for a rule is then given by the number of sequence fragments containing
a specified pattern divided by the total number of sequence fragments in the event
sequence. As the authors point out, this method finds frequent sequences that occur
not only before target events but elsewhere in the event sequence and therefore it
cannot be concluded that these patterns relate to the given target events. In order to
prune these non-related patterns a confidence measure is introduced which evaluates
the number of times the pattern actually leads to the target event divided by the total
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Figure 2.9: Sequence fragments of size T (w1 = 〈(g, t2), (d, t3), (g, t4)〉, w2 =
〈(d, t6), (b, t7)〉, w3 = 〈(b, t7), (e, t8), (c, t9)〉) for the target event e in an event se-
quence s – Sun, Orlowska and Zhou (2003).

number of times the pattern occurs. Both of these values are defined as window sets.
The formal definition of the problem is then: Given a sequence s, target event value e,
window size T , two thresholds s0 and c0, find the complete set of rule r =

{
LHS

T→ e
}

such that supp(r) ≥ s0 and con(r) ≥ c0.

2.6.5 Pattern Directed Mining

Guralnik, Wijesekera and Srivastava (1998) present a framework for the mining of
frequent episodes using a pattern language for specifying episodes of interest. A se-
quential pattern tree is used to store the relationships specified by the pattern language
and then a standard bottom-up mining algorithm can be used to generate the fre-
quent episodes. The specification for mining follows the notation described earlier (see
Section 2.6.1) with the addition of a selection constraint on an event that is a unary
predicate α(e, ai) on a domain Di where ai is an attribute of e, and a join constraint on
events e and f , which is a binary predicate β(e.ai, f.aj) on a domain Di×Dj where ai

and aj are attributes of e and f respectively. They also define a sequential pattern as
a combination of partially ordered event specifications constructed from both selection
and join constraints. To facilitate the mining process the user-specified patterns are
stored in a Sequential Pattern Tree (SP Tree) where the leaf nodes represent events and
the interior nodes represent ordering constraints. Furthermore each node holds events
matching constraints of that node and attached to the node is a boolean expression
that represents the attribute constraints associated with the node (see Figure 2.10 for
two examples).

The mining algorithm constructs the frequent episodes in a bottom-up fashion by
taking an SP Tree T and a sequence of events S and at the leaf level matching events
against any selection constraints and pruning out those that do not match. The inte-
rior nodes merge events of left and right children according to any ordering and join
constraints, again pruning out those that do not match the node specifications. The
process is continued recursively until all events in S have been visited.
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→

e f

(a) SP Tree for the user
specified pattern
e→ f .

e

=

e.name microsoft

(b) SP Tree for the user specified
pattern e{e.name = ‘microsoft’}.

Figure 2.10: Two examples of SP Trees – Guralnik et al. (1998).

2.6.6 Summary of Temporal Sequence Algorithms

Table 2.11: A summary of temporal sequence algorithms.

Algorithm Name Author Year Notes

Candidate Generation: Episodes

WINEPI Mannila, Toivonen and

Verkamo

1995,

1996

State automata,

Window

WINEPI, MINEPI Mannila, Toivonen and

Verkamo

1997 State automata,

Window, Maximal

Pattern Directed Mining Guralnik, Wijesekera

and Srivastava

1998 Pattern language

Event-Oriented Patterns Sun, Orlowska and Zhou 2003 Target events

Pattern Growth: Episodes

PROjected Window Lists

(PROWL)

Huang, Chang and Lin 2004 Projected window lists

2.7 Extensions

2.7.1 Closed Frequent Patterns

The mining of frequent patterns for both sequences and itemsets has proved to be valu-
able but in some cases, particularly when using candidate generation and test tech-
niques, and when small supports are used the performance of algorithms can degrade
dramatically. This has led, in the mining of frequent itemsets, to produce algorithms,
such as CHARM (Zaki and Hsiao, 2002), CLOSET (Pei, Han and Mao, 2000), CLOSET+

(Wang, Han and Pei, 2003) and CARPENTER (Pan, Cong, Tung, Yang and Zaki, 2003),
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that produce frequent closed itemsets, which overcomes some of these difficulties and
produces a far smaller yet still complete set of results. In the sequence mining field
there are few algorithms that deal with this problem, however those that do are, to
some degree, extensions of algorithms that mine the complete set of sequences with
improvements in search space pruning and traversal techniques.

A closed subsequence is a sequence that contains no super-sequence with the same
support. Formally this is defined to be: Given a set of frequent sequences, FS,
which includes all of the sequences whose support is greater than or equal to min supp,
then the set of closed sequences, CS, is CS = {ϕ|ϕ ∈ FS and @γ ∈ FS such that
ϕ v γ and support(ϕ) = support(γ)}. This results in CS ⊆ FS and the problem of
closed sequence mining becomes to find CS above a minimum support.

2.7.1.1 CloSpan

Closed Sequential pattern mining (Yan, Han and Afshar, 2003) follows the candidate
generation and test paradigm and stores the generated sets of candidates in a hash-
indexed result-tree following which post-pruning is conducted to produce the closed set
of frequent sequences. The algorithm uses a lexicographic sequence tree to store the
generated sequences using both I -extension and S -extension mechanisms and the same
search tree structure as PrefixSpan to discover all of the frequent sequences (closed and
non-closed). Pruning is conducted using early termination by equivalence, a backward
sub-pattern and backward super-pattern method.

2.7.1.2 BIDE

BI-Directional Extension based frequent closed sequence mining, an algorithm by
Wang and Han (2004), mines frequent closed sequences without the need for candidate
maintenance. Furthermore pruning is made more efficient by adopting a BackScan
method and the ScanSkip optimisation technique. The terminology used to define the
problem is identical to that of CloSpan. The mining is performed using a method called
BI-Directional Extension where the forward directional extension is used to grow all
of the prefix patterns and also check for closure of these patterns, while the backward
directional extension is used to both check for closure and prune the search space.

2.7.1.3 ClosedPROWL

Closed PROjected Window Lists (Huang, Chang and Lin, 2005) is an extension
to the PROWL algorithm (Huang et al., 2004) that mines the set of closed frequent
continuities. A closed frequent continuity is a continuity which has no proper super-
continuity with the same support. This is formally defined as: Given two continuities
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P = [p1, p2, . . . , pu] and P ′ = [p′1, p
′
2, . . . , p

′
v] then P is a super-continuity of P ′

(and therefore P ′ is a sub-continuity of P ) if and only if, for each non-* pattern
p′j (1 ≤ j ≤ w), p′j ⊆ pj+o is true for some integer o and the integer o is called the
offset of P . This added constraint marks the only difference in the mining compared
to that of PROWL.

2.7.2 Hybrid Methods

2.7.2.1 DISC

DIrect Sequence Comparison (Chiu, Wu and Chen, 2004) combines the candidate
sequence and pruning strategy, database partitioning and projection with a strategy
that recognises the frequent sequences of a specific length k without having to compute
the support of the non-frequent sequences. This is achieved by using k -sorted databases
to find all frequent k -sequences, which skips most of the non-frequent k -sequences by
checking only the conditional k -minimum subsequences. The basic DISC strategy is as
follows. The first position in a k -sorted database is called the candidate k-sequence and
denoted by α1, and given a minimum support count of δ, the k -minimum subsequence
at the δ-th position is denoted αδ. These two candidates are compared and if they are
equal then α1 is frequent since the first δ customer sequences in the k -sorted database
take α1 as their k -minimum subsequence and if α1 < αδ then α1 is non-frequent and
all subsequences up to and including αδ can be skipped. This process is then repeated
for the next k -minimum subsequence in the resorted k -sorted database. The proposed
algorithm uses a partitioning method similar to SPADE (Zaki, 2001b), SPAM (Ayres
et al., 2002) and PrefixSpan (Pei et al., 2001) for generating frequent 2-sequences and
3-sequences and then employs the DISC strategy to generate the remaining frequent
sequences.

2.7.3 Approximate Methods

2.7.3.1 ApproxMAP

Approximate Multiple Alignment Pattern mining (Kum, Pei and Wang, 2002) mines
consensus patterns from large databases by a two step strategy. A consensus pattern
is one which is shared by many sequences and covers many short patterns but may not
be exact. In the first step sequences are clustered by similarity and then from these
clusters consensus patterns are mined directly through a process of multiple alignment.
To enable the clustering of sequences a modified version of the hierarchical edit distance
metric is used in a density-based clustering algorithm. Once this stage is completed,
each cluster contains similar sequences and the summary of the general pattern of each
cluster and a trend analysis begins. First the density for each sequence is calculated
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and the sequences in each cluster are sorted in density descending order, second the
multiple alignment process is carried out using a weighted sequence, which records the
statistics of the alignment of the sequences in the cluster. Consensus patterns are then
selected based on the parts of the weighted sequence that are shared by most sequences
in the cluster using a strength threshold (similar to support) to remove items whose
strength is less than the threshold.

2.7.3.2 ProMFS

Probabilistic Mining Frequent Sequences, an algorithm by Tumasonis and Dzemyda
(2004), is based on estimated statistical characteristics of the appearance of elements
of the sequence being mined and their order. The main thrust of this technique is to
generate a much smaller sequence based on these estimated characteristics and then
make decisions about the original sequence based on analysis of the shorter one. Once
the generation of the shorter sequence has concluded then analysis can be undertaken
using GSP (Srikant and Agrawal, 1996) or any other suitable algorithm.

2.7.4 Parallel Algorithms

With the discovery of sequential patterns becoming increasingly useful and the size of
the available datasets becoming increasingly large there is a growing need for both effi-
cient and scalable algorithms. To this end a number of algorithms have been developed
to take advantage of distributed memory parallel computer systems and in doing so
their computational power.

Demiriz and Zaki (2002) developed an algorithm called webSPADE that modified
the original SPADE algorithm (Zaki, 2001b) to enable it to be run on shared-memory
parallel computers and was developed to analyse web log data that had been cleaned
and stored in a data warehouse.

Guralnik and Karypis (2004) developed two static distribution algorithms, based on
the tree projection algorithm for frequent itemset discovery by Agrawal, Aggarwal and
Prasad (1999), to take advantage of either data- or task-parallelism. The data-parallel
algorithm partitions the database across different processors whereas the task-parallel
algorithm partitions the lattice of frequent patterns, and both take advantage of a
dynamic load-balancing scheme.

The Par-CSP (Parallel Closed Sequential Pattern mining) algorithm developed by
Cong, Han and Padua (2005) is based on the BIDE algorithm (Wang and Han, 2004)
and mines closed sequential patterns on a distributed memory system. The process is
divided into independent tasks to minimise inter-processor communication while using
a dynamic scheduling scheme to reduce processor idle time. This algorithm also uses a
load-balancing scheme.
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2.7.5 Other Methods

Antunes and Oliveira (2003) use a modified string edit distance algorithm to detect
whether a given sequence approximately matches a given constraint, expressed as a
regular language, based on a generation cost. The algorithm to perform this is called ε-
accepts and can be used with any algorithm that uses regular expressions as a constraint
mechanism i.e. the SPIRIT (Garofalakis et al., 1999) family of algorithms .

Yang, Wang, Yu and Han (2002) have developed a method that uses a compatibility
matrix, which is a conditional probability matrix that specifies the likelihood of symbol
substitution, in conjunction with a match metric (“aggregated amount of occurrences”)
to discover long sequential patterns using primarily gene sequence data as the input.

Hingston (2002) viewed the problem of sequence mining as one of inducing a finite
state automaton model that is a compact summary of the sequential data set in the
form of a generative model or grammar and then using that model to answer queries
about the data.

All of the algorithms discussed thus far are either 1- or 2-dimensional but some re-
search has been conducted on multi-dimensional sequence mining. Yu and Chen (2005)
introduce two algorithms, the first of which modifies the traditional Apriori algorithm
(Agrawal and Srikant, 1994) and the second by modifying the PrefixSpan algorithm
(Pei et al., 2001). Pinto, Han, Pei, Wang, Chen and Dayal (2001) propose a theme of
multi-dimensional sequential pattern mining, which integrates both multi-dimensional
analysis and sequential pattern mining and further explores feasible combinations of
these two methods and makes recommendations on the proper selection with respect
to particular datasets.

2.7.6 Time Series Mining

Data mining of time series datasets includes not only includes sequence mining but
also clustering, classification, and association mining (Das, Lin, Mannila, Renganathan
and Smyth, 1998; Guralnik and Srivastava, 1999; Höppner, 2001a; Keogh, Chu, Hart
and Pazzani, 1993; Lin, Keogh, Lonardi and Chiu, 2003). As would be expected, the
constraints available are those appropriate for the form of mining and the rules that
emerge from this type of analysis are similarly aligned with the mining method chosen.
For the case of sequences, typical rules are based on (apriori supplied) calendric, or
cyclic patterns and have some similarity to those addressed in this thesis.
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2.8 Incremental Mining Algorithms

The ever increasing amount of data being collected has also introduced the problem of
how to handle the addition of new data and the possible non-relevance of older data,
and in association rule mining there have been many methods proposed to deal with
this. In this respect sequence mining is no different and similar techniques have also
been developed. The following are the main contributors in this area.

2.8.1 Incremental Discovery of Sequential Patterns

This was an early algorithm produced by Wang and Tan (1996) where the database is
considered to be a single long sequence of events in which a frequent sequential pattern is
a subsequence of this and an update is either the insertion or deletion of a subsequence
at either end, or the database is a collection of sequences and a frequent sequential
pattern is a subsequence of the these and an update is the insertion or deletion of a
complete sequence. The mining is performed using a compact suffix tree.

2.8.2 ISM: Interactive Sequence Mining

Interactive Sequence Mining (Parthasarathy, Zaki, Ogihara and Dwarkadas, 1999)
is built on the SPADE algorithm (Zaki, 2001b) and aims to minimise the I/O and
computational requirements inherent in incremental updates and is concerned with
both the addition of new customers and new transactions. It consists of two phases in
which the first is for updating the supports of elements in Negative Border3 (NB) and
Frequent Sequences (FS ) and the second is for adding to NB and FS beyond what was
done in the first phase. The algorithm also maintains an Incremental Sequence Lattice
ISL, which consists of all of the frequent sequences and all sequences in the NB in the
original database, along with the supports for each.

2.8.3 ISE: Incremental Sequence Extraction

Incremental Sequence Extraction (Masseglia, Poncelet and Teisseire, 2000) is an al-
gorithm for updating frequent sequences where new transactions are appended to cus-
tomers who already exist in the original database. This is achieved by using information
from the frequent sequences from a previous mining run. Firstly, if k is the longest
frequent sequence in DB (the original database), find all new frequent sequences of size
j ≤ (k + 1) considering three type of sequences;

1. Those that are embedded in DB that become frequent due to an increase in
support due to the increment database db,

3The negative border is the collection of all sequences that are not frequent but both of whose
generating subsequences are frequent.
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2. frequent sequences embedded in db,
and

3. those sequences of DB that become frequent by the addition of an item from a
transaction in db,

and secondly find all frequent sequences of size j > (k + 1). In the first pass the
algorithm finds frequent 1-sequences by considering all items in db that occur once and
then by considering all items in DB to determine which items of db are frequent in U
(DB∪db), which are denoted Ldb

1 . Once this is accomplished these frequent 1-sequences
can be used as seeds to discover new frequent sequences of the following types:

1. previous frequent sequences in DB which can be extended by items of Ldb
1

2. frequent sub-sequences in DB which are predecessor items in Ldb
1

3. candidate sequences generated from Ldb
1

This process is continued iteratively (since after the first step frequent 2-sequences are
obtained to be used in the same manner as described above) until no more candidates
are generated.

2.8.4 IUS/DUS: Incrementally/Decreasingly Updating Sequences

Incrementally/Decreasingly Updating Sequences are two algorithms written by Zheng,
Xu, Ma and Lv (2002) for discovering frequent sequences when new data is added to an
original database and for deleting old sequences that are no longer frequent after the
addition of new data respectively. The IUS algorithm makes use of the negative border
sequences and the frequent sequences of the original database in a similar fashion
to the ISM algorithm (Parthasarathy et al., 1999) but introduces an added support
threshold for the negative border. This added support metric (Min nbd supp) means
that only those sequences whose support is between the original min supp value and
Min nbd supp can be members of the negative border set. Both prefixes and suffixes
of the original frequent sequences are extended to generate candidates for the updated
database. DUS recomputes the negative border and frequent sequences in the updated
database based on the results of a previous mining run and prunes accordingly.

2.8.5 GSP+ and MFS+

Zhang, Kao, Cheung and Yip (2002) created two algorithms based on the non-incremental
versions from which they are named – GSP (Srikant and Agrawal, 1996) and MFS

(Zhang et al., 2001). The problem of incremental maintenance here is one of updates
via insertions of new sequences and deletions via removal of old sequences and follows
a similar pattern to previous algorithms by taking advantage of the information from
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a previous mining run. The modifications to both GSP and MFS are based on three
observations (Zhang et al., 2002):

1. The portion of the database that has not been changed, which in most cases is
the majority, need not be processed since the support of a frequent sequence in
the updated database can be deduced by only processing the inserted and deleted
customer sequences.

2. If a sequence is infrequent in the old database then in order for it to become
frequent in the updated database then its support in the inserted portion has
to be large enough or small enough for the case of deletions and therefore it is
possible to determine whether a candidate should be considered by just using the
portion of the database that has changed.

3. If both the old database and the new updated database share a non-trivial set
of common sequences, then the set of frequent sequences that have already been
mined will give a good indication of likely frequent sequences in the updated
database.

These observations are used to develop pruning tests in order to minimise the scan-
ning of the old database to count the support of candidate sequences.

2.8.6 IncSpan: Incremental Sequential Pattern mining

Incremental Sequential Pattern mining (Cheng, Yan and Han, 2004) is based on the
non-incremental sequential pattern mining algorithm PrefixSpan (Pei et al., 2001) and
uses a similar approach to Zheng et al. (2002) by buffering semi-frequent sequences
(SFS) for use as candidates for newly appearing sequences in the updated database.
This buffering is achieved by using a buffer ratio µ ≤ 1 to lower the min supp and
then maintaining the set of sequences, in the original database, that meet this modified
min supp. The assumption is that the majority of the frequent subsequences introduced
by the updated part of the database (D′) would come from these SFS or are already
frequent in the original database (D) and therefore according to Cheng et al. (2004)
the SFS′ and FS′ in D′ are derived from the following cases:

1. A pattern which is frequent in D is still frequent in D′

2. A pattern which is semi-frequent in D becomes frequent in D′

3. A pattern which is semi-frequent in D is still semi-frequent in D′

4. An appended database ∆db brings new items (either frequent or semi-frequent)
5. A pattern which is infrequent in D becomes frequent in D′

6. A pattern which is infrequent in D becomes semi-frequent in D′

For Case (1)-(3) the information required to update the support and project D′ to
find all frequent/semi-frequent sequences is already in FS and SFS and is therefore a
trivial exercise.
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Case (4): Property: An item which does not appear in D and is brought by ∆db
has no information in FS or SFS.

Solution: Scan the database LDB4 for single items and then use any new frequent
item as a prefix to construct a projected database and recursively apply the PrefixSpan

method to discover frequent and semi-frequent sequences.
Case (5): Property: If an infrequent sequence p′ in D becomes frequent in D′, all

of its prefix subsequences must also be frequent in D′. Then at least one of its prefix
subsequences p is in FS.

Solution: Start from its frequent prefix p in FS and construct a p-projected
database on D′ and use the PrefixSpan method to discover p′.

Case (6): Property: If an infrequent sequence p′ becomes semi-frequent in D′, all
of its prefix subsequences must be either frequent of semi-frequent. Then at least one
of its prefix subsequences, p, is in FS or SFS.

Solution: Start from its prefix p in FS or SFS and construct a p-projected
database on D′ and use the PrefixSpan method to discover p′.

The task of the algorithm is then, given an original database D, and appended
database D′, a threshold min supp, a buffer ratio µ, a set of frequent sequences FS and
a set of semi-frequent sequences, SFS, to find all FS′ in D′ (Cheng et al., 2004). This
is a two step process in which, first LDB is scanned for single items (Case (4)) and
second, every pattern in FS and SFS in LDB are checked to adjust the support of them
and if a pattern becomes frequent add it to FS′. If it meets the projection condition
(suppLDB(p) ≥ (1− µ) ∗min supp) then use it as a prefix to project a database as in
Case (5) and if the pattern is semi-frequent add it to SFS′. Optimisation techniques
dealing with pattern matching and projected database generation are also applied.

2.8.7 Improvements of IncSpan

Nguyen, Sun and Orlowska (2005) in their paper titled ‘Improvements of IncSpan:
Incremental Mining of Sequential Patterns in Large Database’ found that in general
IncSpan fails to mine the complete set of sequential patterns from an updated database.
Furthermore, they clarify the weaknesses in the algorithm and provide a solution, Inc-

Span+ which rectifies them. The weaknesses identified are for Cases (4)-(6) (see pages
46 for details) and proofs are given, in the form of counter examples, that prove they
are incorrect. For Case (4) they prove that not all single frequent/semi-frequent items
can be found by scanning LDB and propose a solution that scans the entire D′ for
new single items. For Case (5) they show that it is possible that none of the prefix
subsequences p of an infrequent sequence, p′ in D that becomes frequent in D′ are in
FS and propose to not only mine the set of FS but also those of SFS. For Case (6)
it is shown that it is possible that none of the prefix subsequences of p of an infrequent

4The LDB is the set of sequences in D′ which are appended with items/itemsets
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sequence, p′ in D that becomes semi-frequent in D′ are in FS or SFS and propose
to not only mine the set of FS but also those of SFS based on the projection con-
dition. By implementing these changes IncSpan+ not only guarantees the correctness
of the incremental mining result, but also maintains the complete set of semi-frequent
sequences for future updates (Nguyen et al., 2005).

2.9 Areas of related research

2.9.1 Streaming Data

Mining data streams is an area of related research that is still in its infancy, however
there is a significant and growing interest in the creation of algorithms to accommodate
different datasets. Among these researchers are Lin, Keogh, Lonardi and Chiu (2003)
who look at a symbolic representation of time series and the implications with respect
to streaming algorithms. Giannella, Han, Pei, Yan and Yu (2003) who mine frequent
patterns in data stream using multiple time granularities, and Cai, Clutter, Pape, Han,
Welge and Auvil (2004) and also Teng, Chen and Yu (2003) use multidimensional
regression methods to solve the problem. Laur, Symphor, Nock and Poncelet (2005)
evaluate a statistical technique which biases the estimation of the support of sequential
patterns, so as to maximise either the precision or the recall and limits the degradation
of the any other criteria and Marascu and Masseglia (2005) use a sequence alignment
method similar to that used by Kum et al. (2002) in ApproxMAP and Hay, Wets and
Vanhoof (2002) in their Web Usage Mining research. A review of the complete field
of mining data streams can be found in ‘Mining Data Streams: A Review’ by Gaber,
Zaslavsky and Krishnaswamy (2005).

2.9.2 String Matching and Searching

A much older yet related field is that of approximate string matching and searching,
where the strings are viewed as sequences of tokens. Research in this area has been
ongoing for some time and includes not only algorithms for string matching using
regular expressions (Hall and Dowling, 1980; Aho, 1990; Breslauer and Ga̧sieniec, 1995;
Bentley and Sedgewick, 1997; Landau, Myers and Schmidt, 1998; Sankoff and Kruskal,
1999; Chan, Kao, Yip and Tang, 2002; Amir, Lewenstein and Porat, 2000), but also
algorithms in the related area of edit distance (Wagner and Fischer, 1974; Tichy, 1984;
Bunke and Csirik, 1992; Oommen and Loke, 1995; Oommen and Zhang, 1996; Cole
and Hariharan, 1998; Arslan and Egecioglu, 1999, 2000; Cormode and Muthukrishnan,
2002; Batu, Ergün, Kilian, Magen, Raskhodnikova, Rubinfeld and Sami, 2003; Hyyrö,
2003). For an excellent survey on this field see ‘A Guided Tour to Approximate String
Matching’ by Navarro (2001).
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There is however no reason why text cannot be viewed in the same way and Ahonen,
Heinonen, Klemettinen and Verkamo (1997, 1998) and Rajman and Besançon (1998)
have applied similar techniques, based on generalised episodes and episode rules, to
text analysis tasks.

2.10 Rule Inference

The purpose of generating frequent sequences, no matter which techniques are used,
is to be able to infer some type of rule, or knowledge, from the results. For example,
given the sequence A . . . B . . . C occurring in a string multiple times, rules such as:
token (or event) A appears (occurs) then B and then C, can be expressed. It has
been argued by Padmanabhan and Tuzhilin (1996) that these types of inference, and
hence the temporal patterns, have a limited expressive power. For this reason mining
for sequences and the generation of rules based on first-order temporal logic (FOTL),
carried out by Padmanabhan and Tuzhilin (1996), has extended the work by Mannila
et al. (1995) to include inferences of the type Since, Until, Next, Always, Sometimes,
Before, After and While, by searching the database for specific patterns that satisfy a
particular temporal logic formula (TLF). One disadvantage to this approach is that no
intermediate results are obtained and thus any mining for a different pattern must be
conducted on the complete database, which could incur a significant overhead. Höppner
(2001a) and Höppner and Klawonn (2001) use modified rule semantics, J-Measure and
rule specialisation to find temporal rules from a set of frequent patterns in a state
sequence. The method described uses a windowing approach, similar to that which
is used to discover frequent episodes, and then imposes Allen’s interval logic (Allen,
1983) to describe rules that exist within these temporal patterns. Kam and Fu (2000)
deal with temporal data for events that last over a period of time and introduce the
concept of temporal representation and foster the view that this can be used to express
relationships between interval based events, also using Allen’s temporal logic. Sun,
Orlowska and Zhou (2003) use ‘Event-oriented patterns’ in order to generate rules,
with a given minimum confidence, that are in the form of LHS T→ e, conf(θ).

2.11 Discussion

This chapter has surveyed the field of sequential pattern mining since its inception in
1995 by Agrawal and Srikant to the most recent advances. The focus has been on the
different types of datasets and therefore the different algorithmic approaches required
to meet those differences and also the inclusion of constraints, and counting methods for
windowing based algorithms. While the rules produced from the majority of approaches
are simple, in the sense they do not take into account the possibility of using interval
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logic algebras and their derivatives, some do take the that step and produce rules that
are more expressive.

With the improvements in incremental sequential pattern mining and the growing
field of stream data mining the need to express rules with a more expressive nature is
becoming more appealing and has the potential to avail the sequence mining paradigm
to more diverse and complex domains, for example the medical domain. This thesis
presents a method for discovering interacting episodes from temporal sequences (see
Chapter 5) and the analysis of them using temporal patterns. However, in order for
that methodology to be seen in context the following two chapters will discuss temporal
logic in general and a midpoint temporal logic, respectively.



Chapter 3

Temporal Logic

In Chapter 2 the various methods for mining sequences or sequential patterns and
the various rules that may be inferred from those results was discussed. This chapter
extends the discussion on the more traditional approaches to rule inference and intro-
duces the algebras, that are more appropriately placed in the area of temporal logic, on
which rule inference is now being undertaken by Kam and Fu (2000); Höppner and Kla-
wonn (2001); Sun, Orlowska and Zhou (2003); Mooney and Roddick (2004); de Amo,
Giacometti and Santana (2005).

The representation of temporal information in a logical framework has been referred
to as Temporal Logic since the introduction of the modal-logic type approach by Prior
(1957). This form of logic has since been widely developed by both logicians and
computer scientists for a variety of applications including artificial intelligence, program
execution, temporal expressions in natural language, and more recently data mining
(Galton, 2003).

This chapter introduces the major contributing approaches to dealing with temporal
logic in the data mining area, particularly sequences of events (Section 3.1), which in-
cludes the Point and Interval Algebras (Allen, 1981, 1983, 1984; Allen and Hayes, 1989;
Vilain, 1982; Freksa, 1992; Guzmán and Rossi, 1995), in Section 3.2 and Section 3.3,
as well as Fuzzy extensions (Fagin and Halpern, 1988; Badaloni and Giacomin, 1999;
Ohlbach, 2004a,b; Sun, Orlowska and Li, 2003), in Section 3.4.

3.1 Temporal Logic Models

Time can be viewed as both discrete and linear in nature and, with the exception of
Allen (1984), a logic of intervals can be constructed using points rather than from
intervals themselves (Halpern and Shoham, 1991). For any two points in time there
are only three possible operators that can exist between them: before, after or equals.
These equate to the traditional set of binary operators that have been used for rule

50
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inference. Minor extensions to include the possibility of a distance metric to allow
for example k time units before/after have since been included to enhance reasoning.
Intervals, however, can be described as the time between two points and therefore
the relationships between any two intervals can be expressed as a set of relationships
between the start and end points of the given intervals (Allen, 1981; Vilain, 1982). If
any two intervals are denoted as x and y with x−, y− as the start of x and y, and x+

and y+ as the end of x and y, then the set of relationships is as follows:

i. x− and y−

ii. x− and y+

iii. x+ and y−

iv. x+ and y+

If the relationships before, after and equals are now applied to intervals rather than
as operators between points and the above set of constraints are invoked then these
relationships can be expressed as a 4-tuple of the form 〈 i ii iii iv 〉 resulting in 〈<< <<〉,
〈>> >>〉 and 〈=< >=〉 respectively.

If it is assumed that an interval is an ordered set of points with the first point being
less than/before the second point etc., then the valid combinations that can exist be-
tween these four point intervals yield a possible thirteen interval-interval relationships.
Allen developed an algebra based on these thirteen intervals but he also argued

”...that a model based on points {...} does not correspond to our intuitive
notion of time.” (Allen, 1983)

and as a consequence, he used the temporal interval as the primitive for his algebra.
This, however, does not preclude the fact that each interval may have known end points.
Moreover, this proposition has been used with certain relaxations to these endpoints
and has resulted in the algebra of semi-intervals introduced by Freksa (1992).

The algebras that deal with fuzziness, do so mainly in two distinct ways:

1. by relaxing one or both of the endpoints, but not in the same way as Freksa
(1992), as does Ohlbach (2004b)
or,

2. by applying the fuzziness at the reasoning level, á la Badaloni and Giacomin
(1999, 2002, 2006); Badaloni, Falda and Giacomin (2004).

These are primarily extensions that deal with the integration of flexibility and un-
certainty into the classical Interval Algebra.
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Table 3.1: Allen’s thirteen temporal relationships.

Relationship Label Inverse Schematically Endpoint
Constraints

x Before y <

y After x >

x Meets y m
y is-Met-by x mi
x Overlaps y o
y is-Overlapped-by x oi
x Finishes y f
y is-Finished-by x fi
x During y d
y Contains x di
x Starts y s
y is-Started-by x si
x Equals y =

=

x

x

x

x

x

x

x

y

y

y

y

y

y

y
<< <<

>> >>

<< =<
>= >>

<< ><

>< >>

>< >=
<< >=
>< ><

<< >>

=< ><

=< >>

=< >=

The black ball ( ) indicates a known endpoint.

3.2 Allen’s Interval Algebra

In 1983, Allen outlined a closed, non-overlapping set of 13 interval-interval relationships
a set of which can be used to characterise the relative relationship between two temporal
(or directional 1-D) intervals (Allen, 1983). An interval x is represented as a pair
[x−, x+] of real numbers with x− < x+, denoting the start and end points of the
interval respectively (Krokhin, Jeavons and Jonsson, 2003; Drakengren and Jonsson,
1997b). These intervals are denoted: Before (<), Meets (m), Overlaps (o), Finishes (f),
During (d), Starts (s), and their inverses, After (>), is-Met-by (mi), is-Overlapped-
by (oi), is-Finished-by (fi), Contains (di), is-Started-by (si), and Equals (=) – see
Table 3.1 for a complete description.

By considering the fact that there are thirteen basic relations, it follows that there
are 213 = 8192 possible relations in the full algebra, which is denoted by A. The
complete set of subclasses of the full algebra are obtained by considering all subsets of
A of which there are 28192 ≈ 102466. Reasoning using this complete set has been shown
to be NP-complete (Vilain and Kautz, 1986) and as such it has motivated the search
for tractable subclasses where reasoning can be guaranteed among which are those of
Nebel and Bürckert (1995), Drakengren and Jonsson (1997c) and Krokhin, Jeavons and
Jonsson (2003). In the normal course of events, reasoning between such relationships
is facilitated through a transitivity table (Table A.1) which, given the relationship
between two intervals, X and Y and between Y and Z, provides the subset within
which any relationship between X and Z must fall. Reasoning using this method has
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been extensively studied, since the publication of Allen’s paper, with the major foci
on plan creation and simulations (Miller, 1986; Weida, 1995), and in natural language
processing. The work has also been extended in a number of ways including spatial
and uncertain data, see Ladkin (1987) and Gennari (1998) for surveys, and also for the
handling of metric time, as in Meiri’s framework (1991), and the work of Drakengren
and Jonsson (1997a). This research has necessitated the production of algorithms
to solve these problems (van Beek, 1990; Vila, 1994; van Beek and Manchak, 1996;
Oates, Schmill, Jensen and Cohen, 1997; Padmanabhan and Tuzhilin, 1996) for both
the interval and point-based approaches.

3.3 Freksa’s Semi-Intervals

Freksa (1992) extended (generalised) Allen’s work to incorporate the notion of ‘concep-
tual neighbours’ and ‘conceptual neighbourhoods’ to accommodate vagueness in one or
more of the end-points. The intervals that are formed as a result of this vagueness were
termed semi-intervals1. Freksa framed his work from a cognitive perspective and as
such he used the ‘beginnings’ and ‘endings’ of intervals as representational primitives.
The power of such a generalisation lies in the fact that if the relative position of only
one end-point is known, some inference is often still possible, sometimes without loss
of information. For example, although information may be known about the date of
birth or death of a person but not both, this does not preclude some inferences being
made regarding events in the person’s life.

The generalisation to ‘conceptual neighbour’ results from the ability to transform
one of the thirteen Allen relations (see Table 3.1) into another by continuous deforma-
tion, thus the relations before (<) and meets (m) are conceptual neighbours since they
can be transformed into one another by lengthening one of the events. The relations
before (<) and overlaps (o) are not conceptual neighbours since transformation by
continuous deformation can only take place via the relation meets (m). A ‘conceptual
neighbourhood’ is a set of relations between pairs of events that are path-connected
by virtue of ‘conceptual neighbour’ relations. Before (<), overlaps (o) and meets
(m) form a conceptual neighbourhood since they can be transformed into one another
by a series of continuous deformations. Using these generalisations forms the basis of
reasoning that is termed ‘coarse knowledge’ and it was Freksa’s conclusion that tem-
poral reasoning based on the thirteen Allen relations yields either complete knowledge
- using well defined endpoints - or coarse knowledge - using beginnings and/or end-
ings - but never scattered disjunctions. Freksa went on to define a series of eleven
semi-intervals and conceptual neighbourhoods: older (ol), younger (yo), head to head
(hh), survives (sv), survived by (sb), tail to tail (tt), precedes (pr), succeeds (sd),
contemporary of (ct), born before death of (bd), and died after birth of (db) – see

1A semi-interval is equivalent to a ‘nest’ as described by Allen and Hayes (1985).
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Table 3.2: Freksa’s eleven semi-interval relationships.

Relationship Label Inverse Schematically Endpoint
Constraints

x is Older than y ol
y is Younger than x yo

x is Head to Head with y hh

hh
x Survives y sv
y is Survived by x sb
x is Tail to Tail with y tt

tt
x Precedes y pr

y Succeeds x sd
x is a Contemporary of y ct

ct
x is Born before Death of y bd
y Died after Birth of x db

x

x

x

x

x

x

x

y

y

y

y

y

y

y
<< ??
>? >?

=< >?

?? >>

?< ?<

?< >=

<< ?<
>? >>

?< >?

?< ??
?? <?

The black ball ( ) indicates a known endpoint, the white ball ( ) marks the end
of the known event and the dashed lines (- - -) indicate either the continuation
of the event in the same line or not. The length of the dashed lines indicates
the number of alternative implementations of the given relation. The (?) in
the endpoint constraints indicates the possibility of ( <, > or =)a.

aFor the case of Precedes and Succeeds the (?) can only indicate the possibility of (< or >).

Table 3.2 for a complete description. Combinations of certain of these constraints also
yield the following six relations: older & survived by (ob), younger & survives (ys),
older contemporary (oc), surviving contemporary (sc), survived by contemporary (bc)
and younger contemporary (yc).

As has been stated, temporal reasoning is usually conducted using a transitivity
table, and in this respect Freksa was no different. However, by preserving the con-
ceptual neighbourhoods in the arrangement of this table, Freksa was able to exploit
certain outcomes, most notably the symmetry. This enabled a series of condensed rep-
resentations or optimised transition tables for the purpose of performing the reasoning,
the last of which contained only seven entries (Freksa, 1992). For ease of visual refer-
ence, Freksa also defined a series of icons (Figure 3.1) to facilitate the depiction of the
neighbourhoods and their correspondences to Allen’s relations, and used these in the
construction of his tables for coarse reasoning. Fine-grained (Allen) reasoning can also
be undertaken since conjunctions of inferences from coarse reasoning are performed to
yield the result.

For example the fine relation X starts (s) Y corresponds to the two coarse relations
X bc Y and X hh Y and the fine relationship Y overlaps (o) Z corresponds to the



CHAPTER 3. TEMPORAL LOGIC 55

< m o fi di si = s d f oi mi >

Figure 3.1: Freksa’s iconic representation of Allen’s relations in the order used
to preserve conceptual neighbourhoods.

two coarse relations Y bc Z and Y oc Z. For these two relations to hold (X s Y

o Z) it follows that the coarse relations must hold, and therefore the intersection of
all coarse relations will yield the result. In this case the intersections are bd, ol, sb

and ?, of which the intersection is ob, see Figure 3.2. This iconic example has been
elaborated here since it shows the relationship between coarse and fine reasoning and
also since it is the basis for the back-end processing when dealing with Freksa outcomes
in the INTeracting Episode Miner with Timing Marks (INTEMTM ) application (see
Appendix B).
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⊗
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Figure 3.2: Fine-grained (Allen) reasoning using Freksa’s coarse reasoning meth-
ods.
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3.4 Extensions

Extensions to First Order Logic (FOL) have been used by Padmanabhan and Tuzhilin
(1996) who introduce First Order Temporal Logic (FOTL) by adding the temporal
operators Since, Until, Next, and Previous. Further to this, they also derive the opera-
tors Always, Future Sometimes and Past Sometimes, Before, After and While and the
bounded versions Untilk and Sincek. The FOTL language is used to express temporal
patterns that are discovered from temporal databases and constitutes an extension of
the work of Mannila et al. (1995) in the discovery of serial episodes. The use of the
temporal operators Until, Next, Always and Sometimes have also been used by Bacchus
and Kabanza (2000) who also include the derived operator Eventually, and by Cotofrei
and Stoffel (2002).

The model introduced by Fagin and Halpern (1988) allows for the explicit mention
of probabilities in the formulas describing reasoning about knowledge and probability
together, for example “according to agent i, formula ϕ holds with probability at least
b”. They present a framework for the interpretation of the formulas and any inter-
relationships that may exist between the agents’ probability assignments at different
states. This approach is more appropriate in the area of a possible worlds scenario
and for the analysis of program execution in distributed systems and cryptography.
Methods that deal with fuzzy constraint networks such as those by Dubois and Prade
(1989), Vila and Godo (1994), Godo and Vila (1995) and Maŕın, Cárdenas, Balsa and
Sánchez (1997), are not directly related to the current thesis.

Other methods are primarily extensions that deal with the integration of flexibility
and uncertainty into the classical Interval Algebra and can be grouped according to
the method by which the extension is used.

The following two extensions are those that are most useful for application with
sequence mining.

3.4.1 Fuzzy Time Intervals

The first approach by Ohlbach (2004b), introduces the notion of fuzzy time intervals
as opposed to those that are crisp by means of a fuzzy value, which instead of sharply
dropping at the end of the interval, gradually decrease allowing for a smooth degrada-
tion (see Figure 3.3). Their argument is that it is more likely that a question of the type
“give me all of the performances that end before midnight” would not ideally exclude
those that finish one minute or so after. Implementations of these extensions have
been documented in the FuTIRe-system (Fuzzy Temporal Intervals and Relations)
(Ohlbach, 2004a).
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Figure 3.3: A depiction of a crisp and fuzzy interval – Ohlbach (2004b).

3.4.2 Fuzzy Interval Algebra

Badaloni and Giacomin (1999) take another approach and introduce the formalism
IAfuz. This formalism is introduced by way of the framework of Fuzzy Constraint Sat-
isfaction Problem (FCSP). They extend the algebra of Allen by assigning a preference
degree to each atomic relation. They define it on the set as follows:

I = {b[α1], a[α2],m[α3],mi[α4], d[α5], di[α6], o[α7],

oi[α8], s[α9], si[α10], f [α11], fi[α12], eq[α13]}a

where αi ∈ [0, 1], αi ∈ R, i = 1, . . . , 13
aThe atomic relation b ≡ < and a ≡ >.

For example I (o[0.3], d[0.7]) J indicates that the overlap relation between I and
J only holds to a degree of 0.3 and the during relation holds to a degree of 0.7 (see
Figure 3.4 for a pictorial representation). They also include the possibility of adding a
prioritized constraint to indicate how essential it is that a certain constraint be satisfied.
Furthermore they have built a fuzzy Qualitative Algebra QAfuz, an extension of the
Qualitative Algebra of Meiri (1996) who defined the Point Algebra PA, the Interval
Algebra IA, the Point-Interval and Interval-Point Algebras PI and IP , in which they
consider the corresponding fuzzy extensions PAfuz and IAfuz (Badaloni and Giacomin,
2002, 2006) and also PIfuz and IP fuz (Badaloni et al., 2004).

Although FCSP has been applied to job-shop scheduling problems, the characteri-
sation of ill-known diseases and has a view to be used in probabilistic planning systems,
this thesis supports the view that it has value as a constraint in rule production from
the results of sequence mining. Its use in such a situation is outlined in Section 5.3.3.2.
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Figure 3.4: A depiction of an IAfuz relation – Badaloni and Giacomin (1999).

3.5 Discussion

This chapter has introduced the area of temporal logic as it applies to sequence mining
and includes discussions on both the point and interval based approaches and also
extensions for different domains, for example fuzzy intervals. The Allen relationships,
and to a lesser extent those of Freksa, have been widely used in research in both data
modelling, particularly temporal data modelling and temporal databases, but to a lesser
extent in data mining. In the data mining field, including association mining (Kam
and Fu, 2000; Winarko and Roddick, 2006) and time series mining (Bettini, Wang
and Jajodia, 1998; Bettini, Wang, Jajodia and Lin, 1998; Höppner, 2001a), research
has been conducted using subsets of Allen’s algebra, and although some work has
been done using interval sequences (Höppner and Klawonn, 2001; Höppner, 2002; Sun,
Orlowska and Zhou, 2003; Mooney and Roddick, 2004; de Amo et al., 2005) there
remain significant contributions to be made in this area.

This chapter has provided the necessary background on temporal logic from which
our method to discover ‘interacting episodes’, which incorporates the complete set
of Allen’s relations for rule production, can be presented in Chapter 5. Moreover,
in conducting this research it was discovered that a far richer set of rules could be
produced if the midpoints of the intervals were considered and consequently led to the
development of the Midpoint Interval (MI) algebra that is presented in Chapter 4.



Chapter 4

Temporal Intervals with

Midpoints

Chapter 3 discussed Allen’s closed set of 13 interval-interval relationships, which are
able to characterise the relative relationship between two temporal (or directional 1-D)
intervals (Allen, 1983), and Freksa’s semi-intervals (Freksa, 1992), which allow uncer-
tainty in one or more of the endpoints. The Allen relations have subsequently been
extended to spatial applications by extending the algebra to 2-D or higher dimensions
and to equal-length intervals, which restricts the result set for specific applications (see
Ladkin, 1987; Vila, 1994; Gennari, 1998, for surveys on the area).

The motivation for this aspect of the work stems from a need to make more specific
interpretations of transitive relationships than those available using the Allen interval
algebra when data regarding the midpoint of an interval are available. In many cases the
‘natural’ point of reference is the midpoint of an interval and it is therefore appropriate
to develop a mechanism for reasoning between intervals when midpoint information is
known. This is not an uncommon occurrence – for example, the following statements
refer, at least implicitly, to the midpoint of an interval:

• “The parade will be during the second half of the festival”,

• “The event occurred at 1.15pm, give or take a few minutes”,

• “Maxwell was to be a big influence on Peter’s work during the latter part of his
life”,

• “Midway through each quarter the opposition mounted a decisive challenge”.

Furthermore, when dealing with linear temporal sequences certain problems can
arise when the order of the tokens that comprise the stream is not explicitly coded.
This problem can manifest itself in two ways. The first by an implication of order and

59
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the second an implication of simultaneity, both of which are shown to be solvable in
the most part by an algebra that includes midpoints.

Within computing applications, midpoints are again not uncommon. For example,
the midpoint is known implicitly or explicitly when an interval is given as an absolute
time period, when the midpoint is supplied explicitly, and possibly when there is some
granularity involved or when there is some uncertainty.

This chapter presents an algebra in which intervals can be characterised not only in
relation to their endpoints but also their midpoints. The presentation described here
complements the work in temporal constraint processing by Meiri (1996) and Schwalb
and Vila (1998) in which temporal constraint networks are augmented with additional
constraints. In this work the underlying primitive is enhanced with a greater expressive
power but further constraints can still be added. Some of the research outlined in this
chapter has appeared previously (Roddick and Mooney, 2005), but this has since been
reviewed and revised before inclusion.

4.1 Midpoints in Relation to Existing Models

Two models will be presented in this chapter, which are collectively called the Midpoint
Interval (MI) algebra. The first, in Section 4.4, is an extension of Allen’s interval algebra
(Allen, 1983) by refining the overlaps relationship to consider midpoints for equal-length
intervals (Equal-Length Midpoint Interval – ELMI) and the second an extension of the
first equal length model to consider the case of variable-length intervals (Variable-
Length Midpoint Interval – VLMI), in Section 4.5. The relationship of both of these
models to Allen’s and Freksa’s can be seen in Figure 4.1.

Furthermore, so that the variable-length model can be successfully integrated into
the INTEMTM application, it has been necessary to extend Freksa’s iconic repre-
sentations to handle midpoints and this extension is presented in Section 4.7.1. The
visualisation application itself is discussed in Section 7.4 and presented in Appendix B.

As has been stated in Chapter 3, extended reasoning using these interval algebras
is performed using a transitivity table and it is the position of this thesis that both of
the models presented here facilitate additional accuracy, in terms of information gain,
when calculating transitive relationships using such a table. This discussion however
is left until Chapter 7, as are examples that show that the expressive power of the
MI algebra is richer and more powerful than that of Allen’s.

4.2 Linear Temporal Sequences

Linear temporal sequences can be generated in a number of ways. For example telecom-
munications networks, web logs, sensor logs and so on. They can be mined statically
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Figure 4.1: Models of temporal interval relations.

using sequence mining techniques (Mannila et al., 1997; Weiss and Hirsh, 1998; Huang
et al., 2004; Vautier, Cordier and Quiniou, 2005; Dai and Wang, 2005) or dynami-
cally using streaming data mining techniques (Giannella et al., 2003; Lin et al., 2003;
Harada, 2004; Gaber et al., 2005). Regardless of the method, problems may arise if the
sequence has been aggregated into unordered blocks, or when the granularity is larger
than required. This will manifest itself by possibly requiring modifications to the rela-
tionships due to implied order (no time-stamps) or implied simultaneity. In the case of
n polled sensors, for example, the order in which they are polled may have an influence
on any resultant sequences of events that are discovered and therefore govern the set of
temporal relationships that can be found. Moreover, if events are timestamped to the
hour, two events recorded in consecutive hours can be as much as 120 minutes, or as
little as a second apart. This problem can be exacerbated with larger granularities, but
regardless of this, no ordering can be additionally implied for events within any chosen



CHAPTER 4. TEMPORAL INTERVALS WITH MIDPOINTS 62

granularity, in this case the same hour. For this reason it is necessary to dispose of the
strict ordering of events and consider the problem in terms of semi-ordered intervals
(with the length possibly being the number of sensors) and then treat each frequent
sequence discovered as having a start and end point accordingly, thus allowing for a
mid-point to be used.

In many cases, there is no lack of knowledge in the Freksa sense, that is, the end-
points of a particular ‘block’ are known, but it is often the inferred simultaneity of the
events that is of primary concern. Even with non-timestamped data the situation can
arise that ‘blocks’ infer the timestamp and information should be able to be gleaned
even if the boundaries of those ‘blocks’ is shifting (through, for example, a moving
window) (Roddick and Mooney, 2005).

As can be seen in Table 3.1 (page 52), four (meets1, equals, starts and finishes)
of the 13 interval-interval relationships (plus their inverses) require at least one set of
the endpoints of the intervals to be simultaneous which, when presented with a single
data stream, cannot occur – tokens are typically presented in an ordered sequence, even
when, at a fine level of detail, that order is arbitrary. The problem becomes evident
when this arbitrary ordering restricts, in the first instance, mining over the data, and
the second, reasoning over the data.

4.2.1 Implied Order and Implied Simultaneity

In the case where data is originating from a single source and a need exists to either
mine or reason over this data then implying order2 is necessary to accomplish this task
and does not pose a problem. The problem arises when the data either originates from
multiple sources over a fixed period of time or when the data is reported with a larger
than required granularity. The two related problems can be explained as follows.

1. In cases where tokens are provided as a linear (non-timestamped, unidentified)
stream originating from n independent sensors, it must be assumed that any
sequence of n tokens between two tokens in the stream originating from the same
source took place simultaneously and that any apparent order is as a result of
polling delays. This situation is depicted in Figure 4.2. This scenario is analogous
to the way in which association mining treats the contents of each transaction
arising from the same source, that is, the order in which they are put through
the checkout may not be the order in which they were taken off the shelf and
therefore any apparent order could be the result of the way in which the store

1In the discussion on detecting interacting episodes, Section 5.3, the position is adopted that a meets
relationship occurs when two episodes abut each other. This translates to consecutive events when
viewed from the smallest granularity under consideration, therefore removing the need for simultaneity
in this instance.

2Typically this could be a strict ordering, for example less than (<), that would allow for an episodic
or sequence mining algorithm to be used to elicit any information from the data.
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was traversed. This is also analogous to the parallel episode discovery of Mannila
and Toivonen (1996); Mannila et al. (1997) when using non-timestamped data.

B D F A G B D C E F H A C F B G E

Assumed to be simultaneous

Same Source

stream of readings from n independent sensors

Figure 4.2: Data stream generated from n independent sensors.

2. Alternatively, when data are supplied with a larger than required granularity, it
cannot be assumed that those tokens timestamped at ti are necessarily all closer
to each other than those timestamped at ti−1 or ti+1. This applies also to events
placed unordered in ordered blocks of input.

One solution to the first problem is to fragment the stream into sections of at least
2n + 1. However, this does not eliminate the problem as this is a moving window, as
shown in Figure 4.3, which can span any selected fragment size and therefore imply
simultaneity for the entire stream. Moreover, a large fragment (as with a large granu-
larity) may also serve to create the second problem and act to imply simultaneity where
none exists.

k-n k k+n

Wk

j-n j j+n

Wj

Figure 4.3: Moving window of potentially simultaneous tokens where n = 4.

In some cases, data are provided in blocks, in which events are unordered, even if
the blocks themselves are ordered and in this case there is again a window as shown in
Figure 4.4. Assuming n sensors, the ideal situation would be to use the moving window
IWk but in this case the larger window Wk must be used, which encompasses any block
covered by IWk.

For data with too large a granularity, there is again a window, this time of those
events that have an implied simultaneity where none may exist. For example, in
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Figure 4.4: Moving window (w) over tokens with larger than required granularity
(or tokens in blocks).

Figure 4.4 event i is closer to k than event j despite being given a different time-
stamp (i.e. in a different block). This case can be considered as being analogous to the
blocked events problem, albeit that the blocks may be sparse. In 1982, Vilain discussed
five point-interval temporal relationships (see Table 4.1) and thus one solution is to
consider two events as being simultaneous if any of the tokens j starts, finishes or is
during the interval represented by the moving window Wk of the other. This must be
performed twice, once for each end of Wk (Roddick and Mooney, 2005). The alterna-
tive as proposed by this thesis is to extend the interval algebra of Allen to consider
not only the endpoints of the intervals but also their midpoints. This alternative does
not present a true solution to the stated problems but rather represents a solution that
yields on average better results. This alternative is expanded in the following sections.

Table 4.1: Vilains five point-interval temporal relationships.

Relationship Label Schematically Endpoint
Constraints

x Before y <

y After x >

x Finishes y f

x During y d

x Starts y s
x

x

x

x

x

y

y

y

y

y
<<<<

>>>>

>=>=

><><

=<=<

The black ball ( ) indicates a known endpoint of a interval and
the green square ( ) indicates a known point.
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4.3 Midpoint Preliminaries

In Section 3.1 it was stated that intervals can be described as the time between two
points and therefore the relationships between any two intervals can be expressed as a
set of relationships between the endpoints of the given intervals. These relationships
were shown to be,

i. x− and y−

ii. x− and y+

iii. x+ and y−

iv. x+ and y+

where x− and y− refer to the start of x and y, and x+ and y+ as the end of x and y.

When incorporating midpoints, two non-zero-length intervals x and y can be consid-
ered to have a temporal relationship based on the relative positions of their endpoints
and midpoints. If the endpoints are denoted as above and the midpoints are denoted
as x◦ and y◦ respectively, then the resulting relationships are as follows:

i. x− and y− iv. x◦ and y− vii. x+ and y−

ii. x− and y◦ v. x◦ and y◦ viii. x+ and y◦

iii. x− and y+ vi. x◦ and y+ ix. x+ and y+

Since it can be assumed that an interval is an ordered set of points such that
x− < x◦ < x+ and y− < y◦ < y+, the 39 = 19683 possible combinations are reduced
to 49. This extension is discussed in Section 4.5 and the relationships are shown in
Table 4.3.

Requiring all intervals to be equal in length introduces further constraints such as
x− = y− → x◦ = y◦ ∧ x+ = y+ which reduces the combinations to 11. This extension
is discussed in Section 4.4 and the relationships are shown in Table 4.2. Both of these
extensions can be viewed as a further restriction of Allen’s relationships in the same way
that Allen’s are more restrictive than those of Freksa as depicted in Figure 4.1. This
enables, in cases when midpoint data is unavailable, the MI algebra to be transformed
without loss of information into the algebra given by Allen (see Section 4.6.1).

In Allen’s model, closure is computed with a constraint propagation algorithm (see
Figure 4.5). The operation of the algorithm that determines closure is driven by a
queue that contains pairs of intervals < i, j >. Each time the relation between two
intervals i and j is changed the pair is placed on the queue. A call to the procedure
Close is made and each time a pair < i, j > is removed from the queue the algorithm
determines whether the relation between i and j can be used to constrain the relation
between i and other intervals in the database, or between j and those other intervals.
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{ Table is a two-dimensional array indexed by intervals, in which Table[i, j] holds the relation between
intervals i and j. Table[i, j] is initialised to the additive identity vector consisting of all forty-nine
simple relations; except for Table[i, i], which is initialised to (EQUALS).
Queue is a FIFO data structure that keeps track of pairs of intervals whose relation has been changed.
Intervals is a list of all intervals about which assertions have been made.
+ is defined as conjunction and × as composition. }
To Add Ri,j

{ Ri,j is a relation being asserted between i and j. }
begin

Old← Table[i, j];
Table[i, j]← Table[i, j] + Ri,j ;
if Table[i, j] 6= Old

then Place pair < i, j > on fifo Queue;
Intervals← Intervals ≈ {ij};

end;

To Close
{ Compute the closure of assertions added to the database. }
while Queue is not empty do

begin
Get next < i, j > from Queue;
Propagate(i, j);

end;

To Propagate(i, j)
{ Propagates the changes to the relation between i and j to all other intervals. }
for each interval k in Intervals do

begin
Temp← Table[i, k] + (Table[i, j]× Table[j, k]);
if Temp = f { f is the inconsistent vector. }

then Signal contradiction;
if Table[i, k] 6= Temp

then Place pair < i, k > on Queue;
Table[i, k]← Temp;
Temp← Table[k, j] + (Table[k, i]× Table[i, j]);
if Temp = f

then Signal contradiction;
if Table[k, j] 6= Temp

then Place pair < k, j > on Queue;
Table[k, j]← Temp;

end;

Figure 4.5: Allen’s constraint propagation algorithm (Vilain and Kautz, 1986;
Vilain et al., 1989).

If a new relation can be successfully constrained, then the pair of intervals to which it
relates is placed on the queue. The process terminates when no more relations can be
constrained (Vilain and Kautz, 1986; Vilain, Kautz and van Beek, 1989). In the case
of the MI algebra proposed here, the same algorithm can be used to show closure, since
it is asserted that the MI algebra is an extension of the Allen algebra. Furthermore,
since it will be shown that the MI algebra is an extension of the Allen algebra, proof of
closure for the MI algebra can be accomplished using the same technique and is detailed
below. The proof is adapted from proofs that are discussed by Vilain and Kautz (1986);
Vilain et al. (1989) and van Beek (1989).

Theorem 4.1. The problems of determining the satisfiability of assertions in the mid-
point interval algebra and determining their closure are equivalent, in that there are
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polynomial-time mappings between them.

Proof: First, to show that determining closure follows readily from determining
consistency, assume the existence of an oracle for determining the consistency of a set
of assertions in the midpoint interval algebra. To determine the closure of assertions,
run the oracle forty-nine times for each of the O(n2) pairs < i, j > of intervals detailed
in the assertions. Specifically, each time the oracle is run on a pair < i, j >, the oracle is
provided with the original set of assertions and the additional assertion i (R) j, where
R is one of the forty-nine simple relations. The relation vector between i and j is the
one containing those simple relations that the oracle did not reject.

Second, to show that determining consistency follows from determining closure,
assume the existence of an algorithm for closure. To see if a set of assertions is consistent
run the algorithm, and inspect each of the O(n2) relations between the n intervals
detailed in the assertions. The database is inconsistent if any of these relations is the
inconsistent vector: this is the vector composed of no constituent simple relations. �

4.4 Equal Length Intervals

Following Section 4.2.1 where Wj and Wk are identical in length (see Figure 4.3), of
the 13 Allen relationships, 6 of them (during, contains, starts, is-started-by, finishes
and is-finished-by) are not required. Instead, a closed set of 11 midpoint relationships
can be created by extending the Overlaps/is-Overlapped-by relationship as shown in
Table 4.2.

Table 4.2: The eleven equal-length interval-interval relationships with midpoints.

Relationship Label Inverse Schematically Constraints

x Before y <

y After x >

x Meets y m
y is-Met-by x mi
x SmallOverlap y so
y is-SmallOverlapped-by x soi
x MediumOverlap y mo
y is-MediumOverlapped-by x moi
x LargeOverlap y lo
y is-LargeOverlapped-by x loi
x Equals y =

=
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The black ball ( ) indicates a known endpoint and the blue ball ( ) indicates the
midpoint.

As a result of this extension, in Table 4.2 it can be seen that in the context of a
data stream, only MediumOverlap, LargeOverlap and Equals results in the midpoint of
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one interval being within the other and so for any given number of sensors n then the
implied point-point relationship is potentially Equals implying possible simultaneity3.
Again using this new algebra, it is noted that if the relationship between Wi and Wj

for two tokens i and j, where Wi and Wj refer to windows containing i and j, (see
Figure 4.4) is SmallOverlap for any given number of sensors n then the implied point-
point relationship is Before as the endpoint of one does not overlap with the midpoint
of the other.

This discussion on data streams can be concluded using the following pertinent
example.

Example 4.1. Given the relationships A rel−→ B ∧ B
rel−→ C where rel = so,

in Allen’s algebra

A
o−→ B ∧B o−→ C ⇒ A

o,m,<−→ C

whereas the equal-length midpoint model can offer the ability to refine this to

A
so−→ B ∧B so−→ C ⇒ A

<−→ C �

This small example demonstrates that reasoning using information about midpoints
can refine the set of relationships returned. This example will be more fully explored
in Chapter 7.

4.5 Variable Length Intervals

The previous section extended Allen’s interval-interval algebra to consider not only the
endpoints of equal-length intervals but also their midpoints creating a closed set of
11 relationships (Roddick and Mooney, 2005). This section generalises this concept
to variable length relationships. Figure 4.1 shows the relationship between existing
algebras and the work discussed in this thesis. Effectively this process extends Allen’s
13 relationships to 49 as shown in Table 4.3. The following section discusses the naming
conventions and how they were derived.

4.5.1 Naming Conventions

To maintain consistency with the algebras currently in use, naming of the relationships
is based, where possible, using an existing relationship as a stem and then a deductive
selection from either a size factor or a midpoint position. Using this approach has
resulted in the following rules.

3In the case of input as a linear sequence, the relationship Equals cannot itself occur.
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1. Any unchanged Allen relationships remain the same, namely:

Before (<), Meets (m), is-Met-by (mi), After (>) and Equals (=)

2. The overlap relationships use the stem o from the Allen overlap relationship as
a postfix which is then prefixed by the nature of the overlapping intervals. This
is required to be a two character prefix, the first denotes how much of the first
interval overlaps the second and the second denotes how much of the second
interval is overlapped by the first.

large

medium

small

Figure 4.6: The sections of an interval that are representative of small,
medium and large prefixes for the overlap relationships.

These prefixes can be one of the following (see Figure 4.6 for the section of the
interval they pertain to):

• small (s), which involves the section of the interval up to but not including
the midpoint and adheres to the constraints:

(y− < x+ < y◦)⊕ (y◦ < x− < y+)

• medium (m), which involves the section of the interval up to and including
the midpoint and adheres to the constraints:

(y− < x+ = y◦)⊕ (y◦ = x− < y+)

• large (l), which involves the section of the interval up to but not including
the endpoint and adheres to the constraints:

(y◦ < x+ < y+)⊕ (y− < x− < y◦)

For example if a small part of interval X overlaps a large part of interval Y then
this results in a SmallLargeOverlap (slo), see Figure 4.7.

Figure 4.7: Depiction of a SmallLargeOverlap (slo) relationship.

1. The containment relationships are based on an endpoint or midpoint defining the
relationship. Only four of the seven relationships use the stem d from the Allen
during relationship, the other three are denoted more descriptively by using the
midpoint of the containing interval.



CHAPTER 4. TEMPORAL INTERVALS WITH MIDPOINTS 70

This yields the following labels for use as prefixes and/or postfixes:

• first (f). If used as a prefix, it indicates an endpoint of an interval. If used
as a postfix, it indicates the section of an interval (the same as in the overlap
case).
• last (l). If used as a prefix, it indicates an endpoint of an interval. If used as

a postfix, it indicates the section of an interval (the same as in the overlap
case).
• mid (m). This always refers to the midpoint of an interval.
• on (o). This refers to an endpoint or midpoint being ‘on’ an endpoint or

midpoint.

Combinations of these are used to indicate the nature of the containment, for
example, if the endpoint of X (x+) is during the first part of Y (y− < x+ < y◦)
then the resultant relationship is a LastDuringFirst (ldf), see Figure 4.8.

Figure 4.8: Depiction of a LastDuringFirst (ldf) relationship.

2. The starts and finishes relationships use the stem s or f from the Allen start and
finish relationship as a prefix and this is then postfixed by the amount that one
interval starts or finishes the other.

large

medium

small

Figure 4.9: The sections of an interval that are representative of small, medium
and large postfixes for the startsa relationships.

aThe corresponding finishes sections are the inverse of the starts sections.

This determination is made in a similar way to that of the overlap relationship
(see Figure 4.9 for the starts sections), however the constraints are different since
both endpoints can be used.
The postfixes can be:

• small (s), which involves the section of the interval up to but not including
the midpoint and adheres to the constraints:

(x− = y−) ∧ (x+ < y◦)

• medium (m), which involves the section of the interval up to and including
the midpoint and adheres to the constraints:
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Figure 4.10: Depiction of a StartsMedium (sm) relationship.

(x− = y−) ∧ (x+ = y◦)

• large (l), which involves the section of the interval up to but not including
the endpoint and adheres to the constraints:

(x− = y−) ∧ (x+ < y+) where (x◦ > y◦)

An example of a StartsMedium (sm) relationship is shown in Figure 4.10.

4.5.2 The Set of Variable-Length Midpoint Interval Relationships

Using the naming conventions derived in the previous section, it is now possible to show
how the set of VLMI relationships divide the Allen relationships. This is performed in
the following way:

Overlap – 9 different types
SmallSmallOverlap (sso), SmallMediumOverlap (smo), SmallLargeOverlap (slo),
MediumSmallOverlap (mso), MediumMediumOverlap (mmo), MediumLargeOverlap (mlo),
LargeSmallOverlap (lso), LargeMediumOverlap (lmo), LargeLargeOverlap (llo)

During – 7 different types
FirstDuringLast (fdl), FirstOnMid (fom),
MidDuringLast (mdl), MidOnMid (mom), MidDuringFirst (mdf),
LastOnMid (lom), LastDuringFirst (ldf)

Starts – 3 different types

StartsSmall (ss), StartsMedium (sm), StartsLarge (sl)

Finishes – 3 different types

FinishesSmall (fs), FinishesMedium (fm), FinishesLarge (fl)

unchanged – 5 types

Before (<), After (>), Meets (m), is-Met-by (mi), Equals (=)

which, including the inverses, makes a closed set of 49 variable length, interval-interval
relationships with midpoints that are depicted in Table 4.3.

Harnessing the full power of the midpoint relations requires the examination of
the possible transitive relationships and, in a similar manner to the Allen algebra, a
transitivity table – this time 49 × 49 – can be constructed. Discussion of this is left
until Chapter 7, and the table itself is included in Appendix A.
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Table 4.3: The 49 VLMI relationships, showing the 9 overlap, 7 during, 3 start, 3
finish (with their inverses) and the 5 unchanged Allen relationships.

Relationship Label Inverse Schematically Constraints

x Before y <

y After x >

x Meets y m
y is-Met-by x mi
x SmallSmallOverlap y sso
y is-SmallSmallOverlapped-by x ssoi
x SmallMediumOverlap y smo
y is-SmallMediumOverlapped-by x smoi
x SmallLargeOverlap y slo
y is-SmallLargeOverlapped-by x sloi
x MediumSmallOverlap y mso
y is-MediumSmallOverlapped-by x msoi
x MediumMediumOverlap y mmo
y is-MediumMediumOverlapped-by x mmoi
x MediumLargeOverlap y mlo
y is-MediumLargeOverlapped-by x mloi
x LargeSmallOverlap y lso
y is-LargeSmallOverlapped-by x lsoi
x LargeMediumOverlap y lmo
y is-LargeMediumOverlapped-by x lmoi
x LargeLargeOverlap y llo
y is-LargeLargeOverlapped-by x lloi
x FinishesSmall y fs
y is-FinishedSmall-by x fsi
x FinishesMedium y fm
y is-FinishedMedium-by x fmi
x FinishesLarge y fl
y is-FinishedLarge-by x fli
x LastDuringFirst y ldf
y FirstContainsLast-of x ldfi
x LastOnMid y lom
y MidOnLast-of x lomi
x MidDuringFirst y mdf
y FirstContainsMid-of x mdfi
x MidOnMid y mom
y MidOnMid x momi
x MidDuringLast y mdl
y LastContainsMid-of x mdli
x FirstOnMid y fom
y MidOnFirst-of x fomi
x FirstDuringLast y fdl
y LastContainsFirst-of x fdli
x StartsSmall y ss
y is-StartedSmall-by x ssi
x StartsMedium y sm
y is-StartedMedium-by x smi
x StartsLarge y sl
y is-StartedLarge-by x sli
x Equals y =

=
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The black ball ( ) indicates a known endpoint and the blue ball ( ) indicates the
midpoint.
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4.6 Transformations

Freksa’s conceptual neighbourhoods have been widely accepted, in part because they
represent a pragmatic grouping of sets of Allen relationships. That is, it may be the
case that the results obtained from an analysis are too numerous and a more general
outcome from a transitive relationship is sought. In this case it would be helpful if a
more ‘relaxed’ set of possibilities were available. As can be seen in Figure 4.1 (page 61),
the VLMI relationships transform either into the ELMI relationships when equal interval
durations are applied as a restriction or into Allen’s and further into Freksa’s when
midpoints or one endpoint are not known.

4.6.1 Conceptual Hierarchies

The results of any transformations from one state to another, as depicted in Figure 4.1
(page 61), are best described as a hierarchy and as such certain hierarchies must exist
if the model as depicted is a correct representation of events. These hierarchies are
descriptive of a transformation without loss of information from one state to another.
However, it is not possible that all of the relationships are able to be transformed
from one state to another. The most conspicuous example is the during relationship,
which can be described by the Allen model, the VLMI model and take part in any
Freksa neighbourhoods, but cannot be described using the ELMI or Equal-Length Allen
models. The following sections further this concept, and in doing so validate the model,
by describing the available hierarchies using the VLMI model as a base for any possible
transformations.

4.6.1.1 Terminology for Describing Sets of Constraints

The following sections describe relationships using sets of constraints that were intro-
duced earlier, see Section 4.3 (page 65), and are reproduced here for convenience.

Assume there exists intervals X and Y then:

For the MI algebra the relationships are depicted thus:
〈<<< <<< <<<〉

The first of the three groups describes the relationship between: x− and y−, y◦ and y+;
the second the relationship between: x◦ and y−, y◦ and y+; and the third the relation-
ship between: x+ and y−, y◦ and y+.

For the Allen algebra these relationships are depicted thus:
〈<< <<〉

Given the same two intervals X and Y then the first group describes the relation-
ship between: x− and y− and y+; and the second the relationship between: x+ and
y− and y+
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4.6.1.2 The Overlap Hierarchy

is-Overlapped-by

is-SmallOverlapped-by is-MediumOverlapped-by is-LargeOverlapped-by

Small
Small

Overlap

Small
Medium
Overlap

Small
Large

Overlap

Medium
Small

Overlap

Medium
Medium
Overlap

Medium
Large

Overlap

Large
Small

Overlap

Large
Medium
Overlap

Large
Large

Overlap

Small
Overlap Medium

Overlap Large
Overlap

Overlap

Figure 4.11: Hierarchical structure of the overlap relation.

The transformation from VLMI relationships through to ELMI midpoint relation-
ships and then through to Allen’s relationships is best illustrated by the overlap hi-
erarchy, see Figure 4.11. The bottom section of the hierarchy shows the transforma-
tion into the Equal-Length relations (SmallOverlap, MediumOverlap and LargeOverlap)
and then further into the Allen overlap relation from the perspective of an interval X
that overlaps an interval Y . Using the three VLMI relationships, SmallSmallOverlap,
MediumSmallOverlap and LargeSmallOverlap as an example, the transformation to
the ELMI relationship SmallOverlap is evident since the endpoint of X, in all cases, is
less-than the midpoint of Y – the condition for SmallOverlap. The top section of the
hierarchy has the same property when viewed from the perspective of the interval Y
being overlapped by an interval X. This can be formalised using the relative positions
of the endpoints and midpoints as follows.
The defining constraints for any overlap relationship are that:

(x− < y−) ∧ (x+ > y−) ∧ (x+ < y+)
and this is regardless of whether midpoints are used. Therefore, the MI model for the
overlap relationships can be proved by reducing them to the Allen model.
Proposition 4.1. The MI overlap relationships are a subset of the Allen overlap rela-
tion.
Proof: The set of Small Overlap midpoint relationships has the following variable-
length members: sso, mso and lso, which have the following endpoint and midpoint
constraints;
〈<<< <<< ><<〉, 〈<<< =<< ><<〉 and 〈<<< ><< ><<〉

respectively. By removing any references to midpoints each of these is reduced to
〈<< ><〉, 〈<< ><〉 and 〈<< ><〉

which are precisely the constraints for the Allen overlap relation. �

The proofs for the Medium and Large Midpoint Overlap relationships follow directly
from this.



CHAPTER 4. TEMPORAL INTERVALS WITH MIDPOINTS 75

4.6.1.3 The During Hierarchy

During

First-is-Contained Mid-is-Contained Last-is-Contained

First
During
Last

First
On
Mid

Mid
During
Last

Mid
On
Mid

Mid
During
First

Last
On
Mid

Last
During
First

x During Last x On Mid x During First

During

Figure 4.12: Hierarchical structure of the during relation.

The during hierarchy, see Figure 4.12, cannot be transformed into Equal-Length
relationships (they can never occur), however some interesting features can still be
extracted that may enable a more ‘informed’ outcome from any transitive relationships
being investigated. The top section of the hierarchy deals with relations with respect
to where the containment is situated allowing information to be gleaned regarding the
general placement of one interval within another. For example “The parade will be
during the second half of the festival”, may be represented by a First-is-Contained
relationship. The following is then evident:

• Last-is-Contained is concerned with the interval up to and including the midpoint,
and therefore information regarding events that occur in the first half of the
interval can be obtained.

• First-is-Contained is concerned with the interval from the midpoint to the end of
the interval and therefore information regarding events that occur in the second
half of the interval can be obtained.

• Mid-is-Contained is concerned with the ‘middle’ section of the interval and there-
fore information regarding events that occur over the complete interval can be
obtained.

The bottom section is less definitive about what information is available but some
insights are still possible. The x During First can be used to indicate that at the very
least the first part of an interval X is contained completely in the first half of an interval
Y , for example “At least the first half of the parade will be concluded by midday”. A
similar inference can be made using the x During Last relationship with respect to
the last half of each interval. The x On Mid relationship is included for completeness,
however, it does not yield any more information than using Allen’s during relationship.

The defining constraints for any during relationship are that:
(x− > y−) ∧ (x+ < y−)
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and this is regardless of whether midpoints are used. Therefore, the MI model for the
during relationships can be proved by reducing them to the Allen model.

Proposition 4.2. The MI during relationships are a subset of the Allen during relation.

Proof: The set of Mid-is-Contained variable-length midpoint relationships has the
following members: mdl, mom and mdf, which have the following endpoint and
midpoint constraints;
〈><< ><< >><〉, 〈><< >=< >><〉 and 〈><< >>< >><〉

respectively. By removing any references to midpoints each of these is reduced to
〈>< ><〉, 〈>< ><〉 and 〈>< ><〉

which are precisely the constraints for the Allen during relation. �

The proofs for the First-is-Contained and Last-is-Contained midpoint during rela-
tionships follow directly from this.

4.6.1.4 The Starts and Finishes Hierarchies

As with the during relation, it is not possible to transform the starts or finishes rela-
tions into ELMI relationships and therefore it is only a trivial transformation from a
VLMI relationship to the Allen relationship that is possible. The information that can
be gleaned from each of the Variable-Length relationships is inherent in its naming.
The hierarchies are depicted in Figure 4.13.

The starts and finishes relationships can be seen as ’special’ cases of the during
relationship and their defining constraints are as follows:

Starts: (x− = y−) ∧ (x+ < y−)
and

Finishes: (x− > y−) ∧ (x+ = y−)
and this is regardless of whether midpoints are used. Therefore, the MI model for the
starts and finishes relationships can be proved by reducing them to the Allen model.

Proposition 4.3. The MI starts and finishes relationships are a subset of the Allen
starts and finishes relations.

StartsSmall StartsMedium StartsLarge

Starts

FinishesSmall FinishesMedium FinishesLarge

Finishes

Figure 4.13: Hierarchical structure of the starts and finishes relations.
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Proof: The set of Starts variable-length midpoint relationships has the following
members: ss, sm and sl, which have the following endpoint and midpoint constraints;
〈=<< ><< ><<〉, 〈=<< ><< >=<〉 and 〈=<< ><< >><〉

respectively. By removing any references to midpoints each of these is reduced to
〈=< ><〉, 〈=< ><〉 and 〈=< ><〉

which are precisely the constraints for the Allen starts relation. �

The proof for the Finishes relationships follow directly from this.

4.7 Iconic Representation

4.7.1 Extensions to Freksa’s Iconic Representations

Freksa’s (1992) iconic representation of Allen’s relations allowed for the expressed
‘neighbourhoods’ to be more readily interpreted. The icon was constructed in such
a way so that conceptual neighbourhoods (the way in which a relation is linked to
another through deformation) were preserved. The Freksa icon showing all of the thir-
teen Allen relations is depicted in Figure 4.14(a). For the VLMI relationships this iconic
representation can be extended in a similar way resulting in the extended icon shown
in Figure 4.14(b). By extending the representation in this way similar inferences to
those using the Freksa semi-interval algebra can also be applied to the VLMI algebra.
In addition, by extending the Freksa notation in this way it allows for a more consistent
display of the output from the developed software (see Appendix B for details).
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(a) The Freksa icon.

<

m
sso smo slo mso

mmo

mlo lso lmo llo

sl sm ss fsi fmi fli

fdl fom mdl
mom

mdflomldf

=
ldfilomimdfi

momi

mdli fomi fdli

fl fm fs ssi smi sli

lloi lmoi lsoi mloi

mmoi

msoi sloi smoi ssoi
mi

>

(b) The extended midpoint icon.

Figure 4.14: Iconic representations of the Allen and VLMI relationships.

As for the Freksa icon, each branch represents a possible deformation and thus the
icon facilitates a reading of the temporal relationship between intervals. The extended
icons depicted in Table 4.4 represent the major divisions of the VLMI relationships.
These equate to a finer granularity of the thirteen Allen relationships. The term finer
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granularity refers to the fact that the relationships are generated using midpoints and
not just the endpoints, which equates to a finer decomposition of the interval.

Table 4.4: The major divisions of the VLMI relationships that equate to a fine
grained depiction of Allens thirteen interval-interval relations.

<

m

Before Meets

sso smo slo mso

mmo

mlo lso lmo llo

fsi fmi fli

Overlaps is-Finished-by

ldfilomimdfi
momi

mdli fomi fdli

ssi smi sli

Contains is-Started-by
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Table 4.4: Major divisions of the VLMI relationships – (continued).
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sl sm ss
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Starts During
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4.8 Discussion

This chapter has demonstrated that, first, an extension to Allen’s interval-interval
relationship algebra to refine the overlaps relationship to consider midpoints for equal
length intervals can be used to accommodate linear (non-timestamped) sequences of
tokens and allow more appropriate reasoning over stream data such as real-time sensor
data. Second, although the equal-length model is sufficient for certain problems, the
model has been generalised to a full set of variable-length, interval-interval relationships
with midpoints. This model was shown to have properties that enabled transformations
into the Allen relationships (without loss of information) and therefore its use is both
appropriate for data that include midpoints or when the endpoints are given in absolute
time, or for data for which this information is not given.

The application of the Allen and Freksa models has been widely applied (Ladkin,
1987; Vila, 1994; Gennari, 1998) and in principle, given the appropriate data, most
of these applications should benefit from this extended midpoint model. Following an
exposé on mining interacting episodes and the incorporation of timing marks into that
process, Chapter 7 discusses the application of this extended model from the perspective
of transitive relationships and will show that the expressive power of this model is at
least equal and in many cases superior, in terms of refining the set of relationships
returned, to both the Allen and Freksa models.



Chapter 5

Mining Interacting Episodes

In Chapter 2 it was stated that the reason for data mining in general was to generate
rules or inferences that could be used as the basis for making decisions related to the
datasets being mined. In the case of sequence mining it was shown that the majority
of algorithms produce rules with limited expressive power; a typical example being
that event X occurred before/after event Y . However, there is a growing number of
researchers who express the rules as using one or more of the Allen intervals, (Höppner,
2001a; Höppner and Klawonn, 2001; Kam and Fu, 2000; de Amo et al., 2005) or some
extension or modification of these (Padmanabhan and Tuzhilin, 1996) and a far richer
or more expressive set of rules is possible. To enable the expression of these rules,
an algorithm for discovery of the frequent sequences is either applied to the data and,
as a result may directly produce temporal rules (Padmanabhan and Tuzhilin, 1996;
Kam and Fu, 2000), or alternatively, a rule generation algorithm is used to for this
production (Höppner and Klawonn, 2001). A further method has been introduced by
Bettini, Wang and Jajodia (1996) where an event structure is specified and all frequent
temporal patterns fitting the structure are discovered.

The purpose of this chapter is to present a framework for the discovery of both
frequent sequences and rules, hereafter called interacting episodes, based on the interval
algebra of Allen, and the Midpoint Interval (MI) algebra elaborated in Chapter 4.
The supporting software, to enable the output from these algorithms to be viewed
both in textual format, or by way of a visualisation of the discovered sequences and
any interactions that they contain, is presented in Appendix B. Moreover, if these
interacting episodes are to be expressed as Allen types, or as Midpoint types, then
further reasoning between any such relationships can be facilitated through transitivity
tables, the subject of which will be covered in Chapter 7.

Some of the research outlined in this chapter has appeared previously (Mooney and
Roddick, 2004), but has since been revised.

81
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5.1 The Framework

The problem of discovering interacting episodes is one that consists of two distinct
phases:

Phase 1. mining the frequent episodes
and,

Phase 2. using the discovered frequent episodes as input for the discovery of the in-
teractions.

It should be noted that these two processes are sufficiently different, as is the ter-
minology used, and as such the mining problem will be defined separately from the
discovery of the interacting episodes. These will be covered in Section 5.2 and Sec-
tion 5.3 respectively. Algorithms for both phases are presented in Appendix C.

The application that has been developed that makes use of this framework is called
INTEMTM : INTeracting Episode Miner with Timing Marks. This application al-
lows for all constraints to be manipulated and adds a visualisation component that
enables both text and pictorial output for both phases. Further additions to the ap-
plication are highlighted in Chapter 6 and the application itself is presented in Ap-
pendix B.

5.1.1 Data considerations

Typically the data used for sequence mining has a structure that includes, as a mini-
mum, an id, a time-stamp and associated items (Agrawal and Srikant, 1995). The data
for episodic mining do not necessarily conform to these fields but are generally similar,
being a collection of events that occur relatively close to each other in a given partial
order (Mannila et al., 1995). These events may, however, have explicit or implicit infor-
mation about the time or occurrence of the event and each event can have any number
of attributes associated with it.

The data used in our experiments has been synthetically generated and consist
of a contiguous string of tokens with the time-stamp of each token being implicitly
determined by the order in which it occurs. That is, the first token, t1, is at time-
stamp 1 and the nth token, tn, is at time-stamp n, where t1 < t2 < · · · < tn. In
addition each token has no explicit attributes assigned. An example of the type of data
can be seen in Figure 5.2 (page 88).
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5.2 Frequent Episode Discovery

5.2.1 Problem Definition

Definition 5.1. Let the set of available input events (the alphabet), denoted T , be
defined as T = 〈t1, . . . , tk〉 | ti 6= tj , i 6= j, 1 ≤ i, j ≤ k. �

Definition 5.2. A sequence S is then defined as a time ordered sequence of input
events and is denoted S = 〈s1, s2, . . . , sm〉 | si ∈ T, 1 ≤ i ≤ m. �

Definition 5.3. An episode, denoted E, is a sequence of events, 〈sn, sn+1, . . . , sn+k〉,
where E ⊆ S and they occur within a specified window width. The number of events in
an episode is called the length of an episode and an episode with a length k is also called
a k-episode. For example, 〈BRAIJV E〉 is a 7-episode. An episode Ea = 〈a1a2 . . . an〉
is contained1 in another episode Eb = 〈b1b2 . . . bm〉, if there exist integers 1 ≤ i1 < i2 <

. . . < in ≤ m such that a1 = bi1 , a2 = bi2 , . . . , an = bin. If episode Ea is contained in
episode Eb, then Ea is called a sub-episode of Eb and Eb a super-episode of Ea, denoted
as Ea v Eb. �

The time at which an event occurs can either be fully specified in the input data
(as would be the case with alarm detection data, patient medical data, or a domain
such as the stock market), or be implied from the ordering of the input sequence (as
would be the case for genomic data).

Definition 5.4. For data that are temporally specified, the order of two events is serial

if a strict time order is placed on the events. For data that are not temporally specified,
then the serialisation is implied by the order of the events in the input sequence. �

By way of example, for fully specified data: two events α and β are considered serial
if αend < βstart or βend < αstart. For non fully specified data: given the sequence of
events 〈BRAIJV E〉 then it is implied that B < R < . . . < V < E.

For data that are fully temporally specified there exists the possibility that events
may occur simultaneously (in parallel), that is, no constraints are placed on the time
of occurrence (Mannila et al., 1997; Guralnik et al., 1998). Even in implied ordered
datasets it is possible, with the introduction of constraints, to achieve a similar outcome.
This and other related considerations will be addressed in Chapter 6, however, in the
context of this current discussion, it can be assumed that the ordering of events is
strictly less than (<).

Definition 5.5. The user defined lookahead, l, defines the maximum length episode,
where |E| ≤ l ≤ |S|. �

1Here the word contained is used in the sense of subset not the temporal logic sense.
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This user defined lookahead, (which is similar to Mannila et al.’s (1997) window
concept), has several advantages:

1. a domain expert may suggest a suitable value or have knowledge of the upper
limit of episode length,

2. a user may wish to limit the scope of the search for data with small alphabets,
which may otherwise produce large numbers of episodes, i.e. genome or DNA
sequences are commonly modelled with the four character alphabet {A,C,G,T},
or as codons and tend to produce very long episodes, which may or may not be
required for any analysis at hand.

Definition 5.6. A window, denoted w, is defined as the length of any episode E,
where |E| ≤ l, this will start at one and increase until lookahead l is reached. The
maximum number of windows at any time, max win, then is given by |S| − w + 1. �

Definition 5.7. The frequency of E in S, freq, denoted ∆, is defined as the number
of windows in which E is contained. �

Definition 5.8. The minimum frequency required for an episode to be reported,
min freq, denoted δ, is calculated using a user defined support, min supp, denoted σ,
multiplied by max win. �

By calculating the minimum frequency in this manner a sliding scale is produced,
similar to Seno and Karypis (2002), with the effect that potentially more interesting
longer episodes can be reported at a lower threshold since there are fewer windows
for longer episodes. Yang, Wang and Yu (2001) also recognised this phenomenon and
introduced a probabilistic measure called information gain to achieve a similar result.

Definition 5.9. If episode Eα is frequent, ∆(Ei) ≥ δ, and there exists no proper super-
episode of Eα with the same support i.e., @Eβ such that Eα @ Eβ and min freq(Eα) =
min freq(Eβ), Eα is called a frequent closed episode. �

The problem definition for Phase 1 can then be stated as:

Phase 1. Find all frequent closed episodes

Ei(1 < i ≤ l) in {S | ∆(Ei) ≥ δ, δ = (|S| − w + 1)× σ}

5.2.2 Algorithmic Considerations

The classic generation of frequent k length episodes, where k ≥ 2, involves the self-
join of the frequent (k -1) episodes, subsequent pruning in accordance with the anti-
monotone Apriori heuristic (downward closure principle)2 (Agrawal and Srikant, 1994),

2if any length k pattern is not frequent in the database, then its length (k+1) super-pattern can
never be frequent.
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and finally frequency derivation through a scan of the dataset. Other methods have now
been proposed to make this process more efficient when dealing with episodic mining
(Guralnik et al., 1998; Huang et al., 2004, 2005), however, since the generation of the
sequences, although important, is not the main concern, the algorithm that has been
implemented is a modified version of of the WINEPI algorithm (Mannila et al., 1997)
for finding serial episodes and also incorporates some of the principles of the PROWL

algorithm (Huang et al., 2004). The WINEPI algorithm uses a combination of the
downward closure principle and a prefix lookup, which is also similar to the projected
window lists of PROWL, only the latter of which has been used in INTEMTM . The
former is not applicable here since a decreasing sliding scale is used for support.

5.2.2.1 INTEMTM – Episode Discovery

The algorithm used for finding the frequent episodes, (see Algorithm C.1), is a breadth-
first search of the input sequence starting with single token episodes. These are pruned
according to min freq, δ, and added to the set F1 of frequent episodes. The window
width is now incremented by one and the 2-episodes are generated, which are again
pruned according to min freq and those that are frequent are added to the set F2. At
this stage, for the purpose of minimising the size of the candidate sets on subsequent
passes of the algorithm, those that are frequent are also added to an included set that
is used as a prefix lookup. This set is maintained for each subsequent pass of the
algorithm and the set of the k -prefixes of frequent episodes is used to improve valid
candidate generation, that is, the first k tokens of the generated (k+1) candidates are
checked against the k -prefixes and retained if there is a match. The included set that is
maintained only contains the most recent k -prefixes in order to minimise any memory
overheads. This candidate pool is then pruned and those candidates that meet the
min freq requirements are stored in Fk+1

3. This stage of the algorithm terminates
when either the lookahead, l, is reached or Fk+1 = ∅. At this point a list of the frequent
episodes is created for use in Phase 2 and then the closed set of episodes is generated
for reporting.

3Since the frequent episodes are available after each pass of the input sequence, if required Phase 2
can be performed in parallel.
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5.3 Interacting Episode Discovery

On completion of Phase 1, or if the requirement that interactions be discovered in
parallel is enforced, the discovery of the interacting episodes begins. If the parallel
option has been chosen this begins during the episode discovery in Algorithm C.1,
at line 17, otherwise it is managed as a separate process. Since the process is the
same regardless of where the user chooses this discovery to take place4, the process is
presented here as though it were being conducted at the conclusion of Phase 1.

5.3.1 Problem Definition

Definition 5.10. Let F be the set of frequent episodes and Fk be the set of frequent
k-length episodes.

Definition 5.11. Let C be the set of candidate episodes and Ck be the set of candidate
k-length episodes.

Definition 5.12. Let an interaction be a temporal relationship between a frequent sub-
episode ei and a sub-episode ej, contained in a frequent episode E, such that |ei|+|ej | =
|E|, and where ej is either:

1. frequent, ∈ F , and denoted θr(ei, ej) | r ∈ R, (see Section 5.3.3.1)

2. infrequent but a candidate, ∈ C, and denoted ψw[p](ei, ej) | w ∈ R, (see Section
5.3.3.2)

3. only exists due to the discovery process, ∆ = 0, and denoted [c]η
d(ei, ej) | d ∈ R,

(see Section 5.3.3.3)

, where R is the set of temporal relationships as described by Allen (1983) (see Table 3.1,
page 52), or MI relationships as described in Chapter 4. �

Definition 5.13. Let the interaction length be the length of either sub-episode ei or
ej and further let the minimum interaction length, min interaction length, γ, be a user
supplied value to limit the interaction length. �

Having this min interaction length enables a domain expert to minimise the number
of interactions reported to those of potential interest.

Definition 5.14. Let min interaction supp, ϕ, be the user defined level of minimum
support. �

It is usually the case that rule generation produces an excessive number of can-
didates and therefore a suitable threshold value must be applied so that this may be
minimised. This threshold value could be based on a combination of factors including:

4Smaller pieces are processed during the parallel option.
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Allen (during) VLMI (during)

LDF

FDL

LOM

FOM

Figure 5.1: Possible positions for a sub-episode e2 → , (|e2| = 2) with a sub-
episode, e1 → , (|e1| = 5).

1. the combined episode length: |ei|+ |ej |,

2. the maximum number of possible positions that a sub-episode, ei, can occur
within an episode, E
or,

3. the frequency (count) of an interaction expressed as a percentage of the total
frequency of the frequent episodes of length |ei|+ |ej |.

The determination of appropriate reporting thresholds is always a difficult task and
can be very subjective. This research has found however, that since Item (3) takes into
account not only the length of the combined sub-episodes (as does Item (1)) but also
only those episodes of the length in question, it is the best metric to use.

Item (2) may have some merit if only Allen type interactions were to be discovered
since there are more positions available for any sub-episode to occupy than would be
the case for midpoint relationships. For example, see Figure 5.1, using the Allen during
relationship and an episode E of length 7, comprising two sub-episodes e1 and e2 where
|e1| = 5 and |e2| = 2, then e2 has 10 possible positions with e1. Given the same episode,
E, and sub-episodes e1 and e2, using the VLMI during relationships, of which there are
7, the possibilities are much less; 1 each of LastDuringFirst and FirstDuringLast and 2
each of FirstOnMid and LastOnMid, and therefore potentially fewer interactions would
be reported.

It should also be noted that any metric that is to be imposed will also be highly
dependent and sensitive to the number of discovered frequent episodes, and therefore
min support, δ, see Definition 5.8.

Definition 5.15. Let the interaction count ξ =
[

frequency θrk∑
k frequency |θrk

|

]
, where frequency θrk

is the count of any specific interaction of length k, and
∑

k frequency |θrk
| is the count

of all interactions of length k. For an interaction to be reported ξ ≥ ϕ. �



CHAPTER 5. MINING INTERACTING EPISODES 88

〈...GLATINREEKENGLISHGEFRERMANNCHLDUTCHATIN

ENGCANTONESELISHLADUTCHTINGERMANFRENCH...〉

10

A1

7 12

B1

10

C1

16

D1

10

C2

12

B2

Figure 5.2: Section of an input string showing varying window widths.

The method for performing this task is shown in Algorithm C.4.

The problem definition for Phase 2 can then be stated as:

Phase 2. : given a list of frequent episodes, F .

∀Ek ∈ F l
k=γ find all θrk

(ei, ej) in {Ek | |ei|, |ej | ≥ γ , ξ ≥ ϕ } .

The following two examples serve to illustrate the nature of the problem.

Example 5.1. Given the frequent episodes E1, E2, E3 where:

E1 = 〈B,R, I, J,A, V,E〉,
E2 = 〈B, I,R,A, J, V,E〉, and
E3 = 〈B,R,A, I, J, V,E〉.

By inspection it can be seen that if e1 = 〈I, J〉 and e2 = 〈B,R,A, V,E〉 then:

1. For Allen relationships

• all three episodes E1, E2,and E3 can be described as IJ during BRAVE,
denoted θd(e1, e2).

2. For VLMI relationships, however, inspection is more difficult but yields

• Episode E1 as an example of a LastOnMid relation, denoted θlom(e1, e2) –
IJ LastOnMid BRAVE,

• Episode E2 as an example of a MidDuringFirst relation, denoted θmdf (e1, e2)
– IJ MidDuringFirst BRAVE, and

• Episode E3 as an example of a FirstOnMid relation, denoted θfom(e1, e2) –
IJ FirstOnMid BRAVE. �

A more complex example can be shown by using the section of input string in
Figure 5.2 as the source for the discovery of the interactions where, A1, B1, B2, C1, C2,

and D1 are assumed to be frequent. The input string itself, DAT15-650 (see Table B.1),
was used as a synthetic data source for testing algorithms in the discovery process and
contains languages for the purpose of readability and easy identification of any detected
interactions.
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Example 5.2. Given the following frequent episodes the task is to identify any rela-
tionships (both Allen and VLMI) that may exist within them:

A1 = 〈G,L,A, T, I,N,R,E,E,K〉
B1 = 〈G,E, F,R,E,R,M,A,N,N,C,H〉
B2 = 〈G,E,R,M,A,N, F,R,E,N,C,H〉
C1 = 〈L,D,U, T, C,H,A, T, I,N〉
C2 = 〈L,A,D,U, T, C,H, T, I,N〉
D1 = 〈E,N,G,C,A,N, T,O,N,E, S,E, L, I, S,H〉

1. For Allen relationships

• Episodes A1, C1, C2, and D1, are all examples of the during relation, de-
noted θd(e1, e2) – LATIN during GREEK, DUTCH during LATIN and CAN-
TONESE during ENGLISH respectively,

• Episode B1 is an example of an overlap relation, denoted θo(e1, e2) – GER-
MAN overlaps FRENCH, and

• Episode B2 is an example of a meets relation, denoted θm(e1, e2) – GERMAN
meets FRENCH.

2. For VLMI relationships

• Although the Episodes A1, C1, C2, and D1, are all examples of some form
of the during relation,

– Episodes A1 and C1 are examples of the MidDuringFirst relation, de-
noted θmdf (e1, e2) – LATIN MidDuringFirst GREEK and DUTCH Mid-
DuringFirst LATIN, and

– Episodes C2, and D1, are examples of the MidOnMid relation, denoted
θmom(e1, e2) – DUTCH MidOnMid LATIN and CANTONESE MidOn-
Mid ENGLISH.

• EpisodeB1 is an example of the LargeLargeOverlap relation, denoted θllo(e1, e2)
– GERMAN LargeLargeOverlap FRENCH, and
• Episode B2 remains unchanged. �

These examples serve to show that although one can easily detect Allen type rela-
tionships, this is not the case for MI relationships, and from experience, gained during
this research, as the episodes get longer and more numerous, this task becomes increas-
ingly difficult.

5.3.2 An Algorithm for Interaction Discovery

Chapters 3 and 4 have shown that intervals can be described using either the end-
point constraints, Table 3.1, or by using both the endpoint and midpoint constraints,
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Table 4.3. This feature has been exploited in the approach to the discovery of interac-
tions detailed here. Lookup tables that contain the endpoint constraints for the Allen
relationships and the endpoint and midpoint constraints for the VLMI relationships,
have been generated and as a result interactions can be found that conform to either
of these two types. For the case of the Freksa semi-interval relationships only certain
types of data are viable for interaction discovery, and the relationships can be vague
in their information content. As such the interaction discovery process does not detect
these relationships at this time. This does not suggest that they may not offer some
valuable insights into the data.

5.3.2.1 INTEMTM – Interaction Discovery

Interaction candidate generation is conducted using an exhaustive search for each fre-
quent k -episode in all frequent (k+n)-episodes. For each frequent episode this will result
in the production of two sub-episodes, the first being the original frequent k -episode
and the second being the sub-episode that remains from the frequent (k+n)-episode
after the frequent k -episode has been removed from it. This will guarantee that all
possible combinations of frequent episodes are used in the search and thus is complete
with respect to the definition of Phase 2. Formally:

search ∀Ek ∈ Fk in {Fk+n | n = 1, . . . , l − k }

to yield

ei ← Ek ∈ Fk and ej ← (Ek+n − Ek) ∈ Fn or ∈ Cn or ∆ = 0

where Fk is the set of frequent k -length episodes, Fn is the set of frequent n-length
episodes, Cn is the set of candidate n-length episodes, and ∆ = 0 means that ej exists
only due to the discovery process.

The midpoint and endpoints are now determined for both ei and ej , with re-
spect to the frequent (k+n)-episode from which they came, and a constraint pat-
tern is generated. This pattern is generated by comparing the relative position of
ei.start to ej .start, ej .mid and ej .end and similarly for ei.mid and ei.end. This pro-
cess is summarised in Table 5.1.

Table 5.1: Constraint pattern propagation rules.

Position of To To yield

ei.start 7→ ej .start, ej .mid, ej .end V ({<, =, >}* {<, =, >} {<, =, >}*)
ei.mid 7→ ej .start, ej .mid, ej .end V ({<, =, >} {<, =, >} {<, =, >})
ei.end 7→ ej .start ej .mid, ej .end V ({<, =, >}* {<, =, >} {<, =,>}*)
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Generating the constraint pattern in this way enables both VLMI and Allen rela-
tionships to be discovered, since all nine constraints are used for VLMI relationships
and only those that relate to endpoints (indicated by an asterisk, “*”, in Table 5.1)
for Allen relationships. These procedures are detailed in Algorithm C.2 and C.3. The
following example will serve to clarify the procedure.

Example 5.3. Constraint Pattern Propagation
Given:

the frequent k -episode Ek = 〈D,U, T,C,H〉
the frequent (k+n)-episode Ek+n = 〈L,A,D,U, T, C,H, T, I,N〉
then
ei = 〈D,U, T,C,H〉 and ej = 〈L,A, T, I,N〉,
and therefore
ei.start = 3, ei.mid = 5, ei.end = 7, and
ej .start = 1, ej .mid = 55, ej .end = 10

This results in the following constraint patterns – based on the above propagation rules
(see Table 5.1).

Allen (><><)
Midpoint (><< >=< >><)

and after performing a lookup into the relevant table, (Table 3.1 or Table 4.3), the
relationships returned are During and MidOnMid and therefore θd(DUTCH,LATIN)
and θmom(DUTCH,LATIN) respectively. �

The outcome from Example 5.3 assumes that both ei and ej ∈ Fk, that is they are
both frequent and reportable as episodes. This equates to the most desirable outcome,
since it generates the strongest rules, but this may not always be the case. A further
consequence of the generation process is that two other possible combinations of sub-
episode may also be discovered. These combinations arise due to the frequency of ej in
the dataset; it may be a candidate that has not reached threshold, or it may not have
even been considered as a candidate. The following section discusses these possibilities.

5.3.3 Interaction Classes

5.3.3.1 Strong Interactions

The class of strong interactions arise when both ei and ej are frequent and reportable as
episodes, (ei, ej ∈ F), and is the most desirable outcome, since it produces the strongest

5In this case the true midpoint is 5.5. The occurrence of a fractional midpoint is quite common and
so that consistency of results is preserved the decision has been made to always round down.
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rules. Given this combination the following relationships are possible: meets, during,
overlaps and their inverses. The equals relationship is excluded from any discussion
since it is not possible for it to be discovered using the procedure already outlined, see
Section 5.3.2.1. The reasons for not reporting the remaining relationships, when this
combination of sub-episodes is evident, follows.

For either before or after to be reported there is a requirement for some inter-
val, or noise, between each of the sub-episodes. For example, the frequent episode
〈α1 α2 α3 ρ1 . . . ρn β1 β2 β3 β4〉, is made up of αi and βj which are the frequent
sub-episodes ei and ej respectively and ρ1...n which represents an interval, or noise,
whichever is more appropriate. For the case of noise this could have been discovered
from either ei or ej by way of further processing. This further processing could be
conducted on a meets relationship6, but given the procedure currently used for the dis-
covery of interactions, this is precluded. Although further processing is not difficult, a
recursive procedure can be implemented to further process either ei or ej , the overheads
may be such that this becomes impractical and therefore a more suitable method may
need to be found. A more practical solution is to report these as meets relationships
and to leave any further processing for any infrequent ej that may be considered as
part of a weak (Section 5.3.3.2) or dependent (Section 5.3.3.3) meets interaction7.

The starts and finishes relationships are also never reported under this scenario since
the constraints can never be generated8, but a domain expert may in fact transform
a meets relationship into either a starts or finishes relationship. However, when ej is
infrequent, even though the constraints are still not generated, it is possible that these
types can be reported by inference, see Section 5.3.3.2 for details.

Definition 5.16. Let a strong interaction θ be a temporal relationship between frequent
sub-episodes (ei, ej) | |ei| + |ej | = |E|, denoted θr(ei, ej) | r ∈ R, where R is the set
of temporal relationships as described by Allen (1983) (see Table 3.1, page 52), or
MI relationships as described in Chapter 4. �

5.3.3.2 Weak Interactions

Weak interactions arise when ei is frequent and reportable as an episode (ei ∈ F) and
ej is a valid candidate episode (ej ∈ C) but not frequent (∆(ej) < δ → ej /∈ F) and
as such is not reportable as an episode. This situation can occur since the discovered
frequent sequences do not adhere to the downward closure principle, and as such it
is possible that during interaction discovery some of the sub-episodes, that have the
potential to become part of a relationship, may be infrequent. This may occur for all
possible relationship types, with the exception of before and after where more processing
is required as previously explained.

6The position is adopted that a meets relationship occurs when two episodes abut each other.
7The best method for accomplishing this remains as a future research project.
8Both starts and finishes require that one of the endpoints be equal for both sub-episodes.
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In a previously published paper, (Mooney and Roddick, 2004), two new types (par-
ticipant and container) were defined for the during relationships under this scenario,
since they were the only relationships in the weak interaction class that were dis-
covered at that time. However, due to an improved algorithm, it is now possible to
detect all relationship types, except before, after and equals. The result is that these
type names have been replaced by a more consistent naming convention, outlined in
Definition 5.17, although they are still used when describing them. Moreover, since this
class of interaction does not comply with the definition of an interaction given earlier,
see Definition 5.12, the need to define them becomes necessary.

Definition 5.17. Let sub-episode ei ∈ F be frequent, and sub-episode ej ∈ C be infre-
quent, (∆(ej) < δ → ej /∈ F). A weak interaction ψ is a temporal relationship between
sub-episodes (ei, ej) | |ei| + |ej | = |E|, denoted ψw[p](ei, ej) | w ∈ R, where R is the
set of temporal relationships as described by Allen (1983), or VLMI relationships as
described in Chapter 4, and [p] is a weighting calculated using the formula p = ∆(ej)

δ .
�

The following discusses the possible configurations sub-episodes and how they are
denoted. The discussion outlines the more general Allen relationships, but these can
be transferred (without loss of generality) to the VLMI relationships for which they
(the Allen relationships) are a parent. All of the configurations assume that ei =
〈α1 α2 . . . αn〉 is frequent and ej = 〈β1 β2 . . . βm〉 is not.

During: This relationship can be present in one of two forms.

• 〈α1 α2 β1 β2 β3 α3 α4〉
• 〈β1 β2 α1 α2 α3 β3 β4〉

These are denoted: ψd[p](ei, ej) and ψdi[p](ei, ej), respectively.

The first is called a participant interaction since the infrequent ej participates in
the during relationship and the second a container interaction since the infrequent
ej acts as a container to enable the during relationship.

Overlap: This relationship can be present in one of two forms.

• 〈α1 α2 β1 β2 α3 α4 β3〉
• 〈β1 β2 α1 α2 β3 β4 α3〉

These types are denoted: ψo[p](ei, ej) and ψoi[p](ei, ej), respectively.

No alternative descriptive names have been coined for these two relationship
types since they conform to the standard terminology of the overlap and overlap
inverse relationships. However, they are only reported from the perspective of
the dominant (frequent) sub-episode.

Start and Finish: This relationship can be present in only one form.
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• 〈α1 α2 α3 α4 β1 β2〉

These relationship types are never captured when the requirement that both sub-
episodes be frequent is enforced, rather they are reported as meets relationships.
However, given that both sub-episodes are frequent, further analysis by a do-
main expert may in fact deem these (meets) relationships to be starts or finishes
relationships.

Since the algorithm that generates the frequent sequences ensures that any prefix
must be frequent, every relationship that is deemed starts or finishes will have the
same structure – a frequent sub-episode followed by an infrequent sub-episode.
This has the effect that only starts relationships are reported. Again, a domain
expert may evaluate a selection of these to be in fact finishes and it is evident
that each finishes relationship can be viewed as the inverse of a starts relationship
and therefore be reported in that way. However, to enable these relationships
to be reported using one that provides the most information, from a frequency
perspective, the logical choice is to report them as starts relationships.

Under the conditions described above it is stated that:

ei starts E, denoted ψs[p](ei, E), or
ej finishes E, denoted ψf [p](ei, E)

where E = (ei + ej).

Meets: This relationship can be present in only one form.

• 〈α1 α2 α3 α4 β1 β2〉

As can be seen, this configuration is identical to the starts and finishes configura-
tion and therefore using the arguments already outlined these types would never
be reported as meets relationships but rather starts or finishes. Again, it may
be possible that a domain expert deems that the configuration is in fact a meets
relationship.

These types are denoted: ψm[p](ei, ej).

Before and After: These types of relationships are never reported due to the fact
that more processing of ej is required to ascertain whether they contain inter-
actions. As has been stated earlier this recursive processing is left as a future
research effort.

All member relationships of weak interactions are implemented using a weighting
determined as a percentage of min sup, which is stored with the relationship. By
implementing them in this way they can be handled using the formalism described
in Section 3.4.2 and expanded by Badaloni and Giacomin (1999, 2002, 2006). This
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weighting can then be used as a means of determining the strength of any relationship
and also as an aid in any determination towards the strength of transitive relationships
during extended reasoning.

5.3.3.3 Dependent Interactions

Dependent interactions arise when ei is frequent and reportable as an episode, (ei ∈
F), and ej only exists due to the process of discovery, (∆(ej) = 0 → ej /∈ C) and
they represent the weakest class of relationship that can be detected. The types of
relationships that may be formed under these circumstances are the same as for weak
interaction class, but their meaning is somewhat different. Since one of the sub-episodes
has not ever been considered a candidate, no frequency (count) is available other than
it being the same as the episode from which it was detected, which in itself is frequent.
The question then becomes whether the non-candidate episode should be reported as
an anomaly or disregarded. In the current environment of INTEMTM the latter is the
case, and therefore it has not been implemented.

For completeness the notation that would be used if and when these types are
reported has been included.

Definition 5.18. Let sub-episode ei ∈ F be frequent, and sub-episode be detected due
to the process of discovery, that is: ∆(ej) = 0 → ej /∈ C. A dependent interaction
η is a temporal relationship between sub-episodes (ei, ej) | |ei| + |ej | = |E|, denoted

[c]η
d(ei, ej) | d ∈ R, where R is the set of temporal relationships as described by Allen

(1983), or VLMI relationships as described in Chapter 4, and c is the frequency (count)
of E. �

5.3.3.4 Interaction Class Summary

The results of interaction discovery can yield three different classes strong, weak and
dependent, each of which contain a subset of the Allen or VLMI relationships. These
are summarised in Table 5.2. A result of the discovery process is also that the same
frequent episodes ei and/or ej could be involved in several strong interactions, and
that a frequent ei and an infrequent ej could be involved in several weak or dependent
interactions. If this were the case then this involvement would be denoted:

Strong Interactions – θd,o(ei, ej)
Weak Interactions – ψs[0.6],o[0.3](ei, ej)

and if dependent interactions were to be reported

Dependent Interactions – [956,1056]η
m,s(ei, ej)
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Table 5.2: Possible configurations of sub-episodes within a frequent episode and
the resultant interaction class.

ei ej E
Interaction Class FR NF FR NF NC FR NF

Strong X X X
Weak X X X
Dependent X X X
(currently not reported)

Never Reported X X X

FR: frequent, NF : non-frequent, NC : non-candidate

These interactions can then be used as a starting point for reasoning using either the
Allen, Freksa or MI transitivity tables. It is also important to note the similarity of
notation of both the weak and dependent interactions with the IAfuz terminology of
Badaloni and Giacomin (1999, 2006).

5.3.3.5 Interaction Pruning

Pruning of the candidate interactions is performed by calculating the frequency of
the particular interaction as fraction of the total number of interactions of the same
length initial episode and then comparing this with a user defined minimum interac-
tion support, min interaction supp, ϕ. The algorithm to perform this is elaborated in
Algorithm C.4. The INTEMTM application also includes a mechanism to constrain
the reportable interactions by the length of the included sub-episodes, see Figure B.3
and Section B.1.3 for details of its use.

5.3.4 Common Tokens

The decision of how to deal with common tokens that occur within both sub-episodes
that constitute a relationship, as in DUTCH during LATIN in Example 5.2 – with a
common token T, is one which also needs to be addressed. This is handled directly
by the interaction discovery process, because using the point based approach the only
interest, initially, is in the start and end of the sub-episodes, and therefore the method
locates the first token that results in a match for the sub-episode in question. This
process, using endpoints, works regardless of the number of repeated tokens and is
shown in Algorithm C.3.

5.3.5 Interruptions at different locations

Sub-episodes interrupting at different locations satisfy one of the three classes of in-
teraction, strong, weak, or dependent, and therefore yield the same two sub-episodes,
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ei and ej . Depending on whether Allen or VLMI relationships have been selected for
discovery has a bearing on the final outcome of this scenario. Since there are multi-
ple VLMI variations of some of the Allen relationships (7 during, 9 overlap, 3 starts
etc...) the result may be a unique relationship, or may be all the same. However, with
Allen types, and for those VLMI types that yield the same relationships, the count for
that particular combination of sub-episodes can be incremented. This will result in an
increased support and hence will indicate a stronger relationship.

For example, given frequent episodes:

E1 = 〈α1 α2 β1 α3 α4 β2 β3 α5 α6〉,
E2 = 〈α1 β1 α2 α3 β2 β3 α4 α5 α6〉,
E3 = 〈α1 α2 α3 α4 β1 α5 β2 β3 α6〉,
E4 = 〈α1 α2 α3 β1 β2 α4 α5 β3 α6〉, and

sub-episodes ei = α1..n and ej = β1..m

Assuming (without loss of generality) that the resultant relationships belong to a par-
ticular interaction class (strong), the following is possible when the type indicated is
being used in the discovery process:

Allen Discovery:

E1..4 → θd(ei, ej)

and therefore the count could be incremented, resulting in a stronger rule.

Midpoint Discovery:

E1 → θmom(ei, ej)
E2 → θmdf (ei, ej)
E3 → θfom(ei, ej)
E4 → θmdl(ei, ej)

for which the count can not be incremented, but each of the discovered rela-
tionships may in fact offer stronger information content and therefore be just as
valuable.

5.4 Discussion

This chapter discusses the development of a method for mining relationships between
interacting episodes based on the Interval algebra of Allen (1983) and the MI algebra
expressed in this thesis and lays down the foundation for the further processing of
the discovered interactions by determining any transitive relationships in which they
participate.
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An important consideration has also been the reporting of episodes and interactions
that are based on frequency metrics, imposed as user-defined constraints, and while this
produces valuable results it may be necessary to alter this approach to cater for more
diverse data in different domains. For example, the reporting heuristic for interactions
(see Section 5.3.2), while adequate for some domain data, may prove to be lacking in
datasets that generate numerous frequent episodes, or have small alphabets, and hence
a different heuristic may be required. Methods that are not based solely on frequency
metrics, for example, the concept of information gain as discussed by Yang, Wang and
Yu (2001), and the application of string edit distance techniques (Arslan and Egecioglu,
2000; Cormode and Muthukrishnan, 2002) to the candidate episodes and interactions,
both independently and in concert, may assist in overcoming the problems associated
with numerous frequent episodes, and allow the reporting of interactions that are both
frequent and of interest.



Chapter 6

Timing Considerations

While many sequences are associated with absolute time values, most sequence mining
routines treat time in a relative sense, only returning patterns that can be described
in terms of Allen-style relationships (or simpler). Sequence mining can be conducted
over static and temporal datasets as well as over collections of events (episodes) and
more recently, there has been a focus on streaming data and various algorithms have
being proposed. As has been stated frequent-pattern (sequence) mining from static
databases has been conducted over a number of years and algorithms for this form of
mining are relatively mature (Srikant and Agrawal, 1996; Pei et al., 2001; Wang and
Han, 2004; Yan et al., 2003). Transaction datasets commonly include a time-stamp for
each transaction and it is this that can be used, in conjunction with a transaction id,
for constraining the mining activity with respect to time granularity.

However, sequence mining is not limited to data stored in transaction-structured
datasets and there are other domains where an implicit time-stamp may or may not
be included such as genome sequencing, web logs, alarm data in telecommunications
networks, sensor data, and so on. In such domains data can be viewed as a series
of events occurring at specific times and therefore the problem becomes a search for
collections of events (episodes) that occur frequently together. Solving this problem
requires a different approach, and several types of algorithm have been proposed for
different domains (Mannila and Toivonen, 1996; Mannila et al., 1997; Spiliopoulou and
Faulstich, 1998; Mooney and Roddick, 2004). Such datasets can also be very similar
in nature to, or are themselves, streaming datasets, an area of research that is gaining
significant interest at present (Gaber et al., 2005; Giannella et al., 2003; Lin et al.,
2003). However, the datasets used in these domains do not always include a time-
stamp and this reduces the problem to those that occur close to each other in the
sequence. This changes the semantics of frequent and makes mining more problematic
if time constraints are required, or if information relative to the pace of the activity is
required.

The focus of the previous chapter was one in which the time-stamp of each token was
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implicitly determined by the order in which they (the tokens) occur, which is exactly the
problem outlined above. This chapter addresses this problem by introducing the notion
of a timing mark (or timing tick) to accommodate absolute time within the sequence
mining process. This allows the process not only to provide information relative to order
and occurrence of sequences but also the pace at which they occurred. Some of the
research outlined in this chapter has appeared previously in conference proceedings
(Mooney and Roddick, 2006), but this has since been revised before inclusion.

6.1 Timing Marks

The concept of timing marks introduced here refers to embedded tokens that indicate
the passage of time. They are not time-stamps in that they do not record absolute
time values but rather ticks which can be referenced to determine the pace of events.

For example, the notion of polled data infers a (fixed) time interval during which
the polling occurs. During this interval, it may be possible that not all sensors are
read, some do not return data or that some need to be read. In addition to this, many
sequences of events have a time-stamp, either inherently in how they are reported, or
overlaid by a system that needs to interrogate the data. How this fixed time element
is encoded in the data is of interest. In traditional sequence mining, time-series mining
and web-log mining each element to be mined has a time-stamp associated with it and
therefore encoding a time element or timing mark is not necessary. With sensor data
and other data streams there is usually no time-stamp and therefore it is necessary to
include a time-stamp or timing mark into the data.

The previous chapter on mining interacting episodes implicitly assumed (in common
with other researchers) that each token (sensor reading) occurred for a fixed period
of time and that the time between tokens was zero, or alternatively, that events are
instantaneous and the time between tokens was constant. That is, a sequence of n
tokens could be viewed as occurring over n time periods of equal length, no matter what
the granularity of that period was (Mooney and Roddick, 2004). The presentation in
this chapter relaxes this assumption. That is, although the time between events may
remain unchanged – equal length intervals – the number of tokens (events) that occur
within that time can vary. These two possible scenarios are depicted in Figure 6.1.
To accommodate this assumption timing marks have been introduced into the data.
These timing marks may have different properties depending on the data they are
associated with and more generally timing marks can be viewed as having the following
possibilities. In all examples that follow the period ‘.’ is used as the notation of the
timing mark.
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A B C D E F G

AB CDE FG

Figure 6.1: Possible structure of data when timing marks are included. The top
section shows the structure used in Chapter 5 and the bottom section shows one
possible scenario of tokens when timing marks are included.

6.1.1 Timing Marks as Tokens

One of the polled sensors is used as the timing mark which would mean that all time-
referenced sequences would be reported with reference to this sensor. One problem
with this option is that the sensor used as the timing mark may not fire regularly and
as such any rules that are reported may or may not have value. If however the sensor
is firing in every cycle then its usefulness from a reporting standpoint is valuable in the
same way as if it were a delimiter.

6.1.2 Timing Marks Added as Delimiters

In this option, timing marks are added as additional tokens to the sequence. This is
necessary where all other tokens are sporadic as is the case with many types of sequence,
or when no timing information is available. For the purpose of dealing with data streams
that carry no time-stamp information this is the preferred format. Possibilities exist
under this scenario to choose a suitable granularity for particular datasets and assign
a token, as a timing mark, to deal with that choice. If necessary two or more tokens
may be chosen to represent different granularities and therefore enable a wider variety
of rules to be generated.

6.1.3 Timing Marks as Absolute Time

In some cases, each token carries with it an absolute time stamp. In this case there is
more information than is required for use with the algorithms proposed in this thesis
and it would be trivial to convert such a sequence to one that contained timing marks
as delimiters. A better solution would be use an algorithm that required the additional
information and then if required use the rule generation algorithm proposed in this
thesis (see Section 5.3 for details).

6.1.4 The Value of Timing Marks

The value of timing marks becomes apparent when queries can be issued and results
reported with respect to timing marks. A given sequence, for example, could be deemed
as “fast/bursty” when it contains none or very few timing marks or as “slow” when
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it contains more than a prescribed amount. For instance, the difference between the
two sequences 〈.ABC.〉 and 〈A...B..C〉 may be significant even if they occur within the
normal lookahead. Moreover, the semantics of the temporal rule A− during → B may
change depending on the number of timing marks that have been encountered. More
significantly, the semantics of rules using temporal relationships such as A−during → B

or A −meets → B may change depending on the number of timing marks that have
been encountered. For instance, to allow for recording latency, two intervals may be
deemed to meet if they occur within n timing marks.

6.2 Rule semantics

Typically rules from sequence discovery are of the type that can described in terms
of Allen-style (Allen, 1983) relationships (or simpler). This is the case not only for
market-basket mining (Agrawal and Srikant, 1995; Garofalakis et al., 1999; Han et al.,
2000; Ayres et al., 2002), but also episodic mining (Mannila et al., 1997; Mooney and
Roddick, 2004; Huang et al., 2004). In the case of episodic mining both parallel and
serial episodes yield these types of rules. When using timing marks as delimiters the
following similar possibilities, to those of episodic mining, must be considered:

1. If the sequences occur within the interval of the timing mark, for example,
〈.ABCDEF.〉, then this may be analogous to parallel episodes. Of course this
would be data dependent and would rely on whether the order within the timing
marks is relevant.

2. If the sequences must occur within a certain number of timing marks, for example,
〈.AB.CDE.F.〉, then this is analogous to serial episodes since the order of the tokens
is relevant.

In the first case above, the discovered sequences could be treated as transactions (if
order is irrelevant) and therefore further processing may be conducted using other data
mining methods, such as association rule mining. In the second case details about the
‘speed’ of discovered sequences can be obtained with respect to the number of timing
marks that are contained, allowing for a better understanding of the data.

If the timing mark is viewed as a period of fixed length, for example 5 minutes or 1
hour, with no absolute time-stamp associated with it then a search can be conducted
for sequences that occur under both of the above conditions with the semantics of any
discovered sequences being that:

1. For sequences that occur over one time cycle (0 timing marks) in the following
sequence – 〈.ABCDEFG.HIJ..〉 – with a maximum look ahead of 5: 〈ABCDE〉,
〈BCDEF〉, and 〈CDEFG〉 are all valid while 〈FGHIJ〉 is not. This may be useful to
determine if certain sensors did not fire during a particular cycle.
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2. For the sequences that occurred over a period of x time cycles or within a pre-
scribed number of time cycles, in the sequence – 〈.ABCDEFG.HIJ..〉 – the sequence
〈FGHIJ〉 occurs over two time cycles.

Given this information, the knowledge of the position of the timing mark allows for
added semantics to be attached to the sequence – not only can it be said that 〈FGHIJ〉
occurs over two time cycles but also that first cycle is ended with 〈FG〉 and the second
is begun with 〈HIJ〉. This may have added interest, depending on the application, to
any resulting output that may be derived.

6.3 Algorithmic Considerations

The presence or lack of timing marks in a data stream enables users to take the op-
portunity to include or exclude the timing marks in their search for frequent episodes.
Consequently, the timing marks feature has necessarily been implemented as a con-
straint, thus allowing the user to select the token that is the timing mark and, in
addition, choose whether to report those episodes that contain exactly the prescribed
number of timing marks or all episodes up to and including the prescribed number of
timing marks.

Since the user is provided with the choice, it makes sense for the implementation
of this constraint to be post episode discovery. To further reinforce this decision, the
token used for the timing mark may be one of the data tokens (see Section 6.1.1), not
one that is orthogonal to the data (see Section 6.1.2), in which case the user may not
wish to remove the token from those episodes that are reported. In order to facilitate
the fact that the timing mark may be one of the data tokens, the input file is scanned
upon selection to generate a list of those tokens available. This incurs no overhead
since the file has to be read before further processing can be undertaken and since this
is an added constraint, the impact on the existing algorithm is minimal.

The implementation of this constraint relies on the following two parameters:

• The lookahead (or window) parameter used in previous work (Mooney and Rod-
dick, 2004) (similar to Mannila et al.’s (1997) window concept, defines the maxi-
mum length episode to be mined), together with

• a timing mark count (tmc), discussed above.

Since both of these measures can be used, for the purpose of “frequent”, a sequence
up to lookahead must also occur within the prescribed number of marks – that is, the
cut-off is either the lookahead or timing mark count whichever is the smaller.
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6.3.1 Timing Mark Pruning

If the user has selected to include the timing marks in their search then the following
will occur after the frequent episodes have been discovered. Firstly pruning will be
conducted on the frequent sequences so that only those that contain the prescribed
number of timing marks, see Algorithm C.5, will remain. If the timing mark is not
determined to be one of the tokens in the data, then removal of the timing marks from
those remaining sequences will ensue, and finally reassignment of them to the correct
output containers, see Algorithm C.6.

For timing marks to remain unambiguous to the user and therefore be consistent
throughout the implemented application then the following is relevant:

1. Within one mark means that there are no timing marks allowed in the sequence.
Algorithmically this can be described by – assuming the timing mark is “.” –

if (tmc = 1 ∧ cand.indexOf(“.”) 6= −1) then

set output to null
end if

return

This also leads to an added pruning technique – for example given the case of one
timing mark, if the search is for an x length sequence and the last item in the
sequence is a timing mark, then the next x sequences are not viable candidates
so can be eliminated from the search.

2. Within/During one or more timing marks. During one timing marks is as de-
scribed above while the remainder is as follows:

Within/During # of sectionsa # of timing marks

1 mark =⇒ one none
2 marks =⇒ two one
3 marks =⇒ three two
...

...
...

...
n marks =⇒ n (n-1)

a# of sections indicates the number of distinct sections the sequence would be broken up
into by the included timing marks.

6.4 Discussion

This chapter has discussed the inclusion of timing marks for dealing with data that have
no absolute time attached to the events to be mined. Different methods of implement-
ing the timing marks has been discussed and the best outcome has been determined
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to be data dependent. Furthermore, it can be seen (Figure B.9, page 197) that the im-
plementation of the algorithm incurs negligible added overhead and that any benefits
associated with the rules that may be reported are important in terms of being able to
determine the pace of a sequence.



Chapter 7

Transitive Relationships

This chapter investigates the use of transitivity tables for further reasoning between two
or more sets of events. This technique has been used by both Allen (1983) and Freksa
(1992) to accommodate both fine and coarse reasoning. This investigation however, will
focus on the expressive power of the augmented transitivity table for ELMI relationships
and the transitivity table for VLMI relationships, introduced in Chapter 4, and which
appear in Appendix A. This exposé of further reasoning using the midpoint transitivity
tables will be conducted using examples and therefore it will be necessary to assess the
outcomes with a comparable alternative set of outcomes. When this has arisen the
Allen transitive relations have been chosen. Any visualisation of the outcomes will be
illustrated using the extended midpoint icon and the Freksa icon.

7.1 The Structure of Transitive Relationships

The use of a transitivity table enables a set of relationships that exist between two sets
of events to be determined. For example, given the relationship between two events, A
and B, A rels−→ B, and between B and C, B rels−→ C, the transitivity table provides the
subset within which any relationship betweenA and C, A rels−→ C, must fall. This process
is usually written in its longest form as A rels−→ B ∧B rels−→ C ⇒ A

rels−→ C, but from this
point, without loss of information, it will be written as A rels−→ B

rels−→ C ⇒ A
rels−→ C.

The reasoning process associated with transitivity can be extended to accommodate
not only relationships of the type above, but also additive structures, such as A rels−→
B

rels−→ C
rels−→ D and thus A rels−→ D, or union types structures of the form A

rels−→ B
rels−→

C and A
rels−→ D

rels−→ C and thus A rels−→ C using both paths for reasoning1. The latter
of these two has the potential to incorporate fuzzy interval logic (see Section 3.4.2),
since one path may have more influence than the other.

1In this case both A and C are different instances of the same events.
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7.1.1 Terminology

Definition 7.1. The set of relationships, RELS, that result from the application of a
transitive process are termed the outcome(s) of that transitive process. �

Definition 7.2. A transitive relationship that takes the form

a1
rels−→ a2

rels−→ a3
rels−→ . . .

rels−→ an−1
rels−→ an ⇒ a1

RELS−→ an

is termed an additive transitive relationship. �

For example the outcome for the additive transitive relationship described by
a1

oi−→ a2
f−→ a3

mi−→ a4 ⇒ a1
>→ a4

is > and therefore it can be said that a1 is after a4, this is illustrated in Figure 7.1(a).

Definition 7.3. A transitive relationship that takes the form

a1
rels−→ a2

rels−→ . . .
rels−→ an−1

rels−→ an ⇒ a1
RELS−→ an

a1
rels−→ b1

rels−→ . . .
rels−→ bm−1

rels−→ bm
rels−→ an ⇒ a1

RELS−→ an

where at least one of a2..n−1 6= b1..m is termed a union transitive relationship. �

For example the outcomes for the union transitive relationship described by

a1
o−→ a2

m−→ A⇒ a1
<−→ A

a1
f−→ b1

o−→ A⇒ a1
o,s,d−→ A

(where a1 and A are different instances of the same event) is the union of both sets of
outcomes – {<} ∪ {o, s, d} → {<, o, s, d} and therefore it can be said that a1 is either
before, overlaps, starts or during A, this is illustrated in Figure 7.1(b).

Outcomes for both of these structures are able to be determined using the software
developed in support of this thesis, see Appendix B, Section B.2 for details.

a1

a2

a3

a4

(a) a1
oi−→ a2

f−→ a3
mi−→ a4 ⇒ a1

>→ a4

A

a2

a1

a1

b1

d s o A

(b) a1
o−→ a2

m−→ A⇒ a1
<−→ A

a1
f−→ b1

o−→ A⇒ a1
o,s,d−→ A

Figure 7.1: Depiction of an additive (left) and union (right) transitive relation-
ship.
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7.2 Transitivity and Known Lengths

When the endpoints of a episode are known, a definite advantage can be gained (in
terms of the reasoning available), since this implies that the midpoint is also known.
Eliminating the knowledge of one or both of the endpoints reduces the reasoning to
that described earlier as coarse reasoning and although significant information can be
gained, the more information that is available the more definitive the answers. One
example where this may make a significant difference is in the medical arena where
more, rather than less, information could be crucial in saving or losing a life. The
outcomes facilitated by the extra knowledge gained by knowing the midpoint is best
explained using examples that are elaborated in the following section.

7.2.1 Transitivity for Variable-Length Intervals

Variable-length intervals (episodes) are generated as a result of sequence mining pri-
marily when a windowing method is used as part of the mining. The relationships that
are able to be expressed between these episodes are not limited in the same way as
equal-length intervals, and therefore if the midpoint is known or can be inferred then
the full set of interval-interval midpoint relationships can be used. The transitivity
table (see Section A.3) for performing any reasoning between such intervals is in this
instance a 49 × 49 table, since there are 49 midpoint interval relationships, as opposed
to the 11 × 11 for the equal-length intervals.

Proposition 7.1. The Variable-Length Midpoint Interval (VLMI) algebra is more pow-
erful than the Allen algebra for determining the outcomes from transitive relationships.

Proof: Since the Variable-Length Midpoint Interval (VLMI) algebra is a subset of the
Allen algebra (see Section 4.6.1 for proofs) and it is a closed set, it follows that any
transitive outcome will, in the worst case able to be transformed fully into the Allen
equivalent, but in the majority of cases the outcomes will be a smaller set of the Allen
equivalent. This last statement can be verified by constructing a 49 × 49 table and
checking each entry, this can be done in O(n2) time. �

The following will showcase two examples where the VLMI algebra produces superior
outcomes to the Allen algebra and will serve to support Proposition 7.1. As a reference
for these two examples, extracts from the VLMI and the Allen transitivity tables are
included, see Table 7.1 and Table 7.2. The complete tables can be found in Appendix A.

The first example highlights the case where merely defining two meeting intervals
does not have the semantic power of defining one interval with its midpoint even if this
option is available.
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Table 7.1: Extract from the VLMI transitivity table showing a selection of Large
and Medium relationships and their inverses.

. . . mso mmo mlo lso lmo llo . . .

..

.
..
.

..

.
mloi . . . sl, sm, ss sl sli, =, sl mdf, lom,

ldf
mdf mdl, mom,

mdf, fl, lloi
· · ·

mmoi . . . sl, sm, ss = sli mdf, lom,
ldf

mom mdl, fl, lloi

msoi . . . ssi, smi, sli,
=, sl, sm,
ss

ssi, smi, sli ssi, smi, sli mdl, mom,
mdf, lom,
ldf, fl, lloi,
lmoi, lsoi

mdl, fl, lloi,
lmoi, lsoi

mdl, fl, lloi,
lmoi, lsoi

. . .

...
...

...

Table 7.2: Extract from the Allen transitivity table showing the meets, overlap,
finishes, is-overlapped-by and is-met-by relations.

. . . m o . . . f oi mi . . .

...
...

...
m . . . < < . . . o, s, d o, s, d fi, =, f . . .

o . . . < <, m, o . . . o, s, d o, fi, di, si, =,
s, d, f, oi

di, si, oi . . .

...
...

...
f . . . m o, s, d . . . f oi, mi, > > . . .

oi . . . o, fi, di o, fi, di, si, =,
s, d, f, oi

. . . oi oi, mi, > > . . .

mi . . . si, =, s d, f, oi . . . mi > > . . .
...

.

..
...

Example 7.1. Consider the relationships shown in Figure 7.2 in which the relationships
a1, a2 meet and both have a relationship with B (a1 finishes B and a2 is met-by B),
which in turn has a relationship with C (overlaps).

C

B

A

a1 a2

Figure 7.2: Expressive power example for two meeting intervals.
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If it were necessary to find the relationship between A (split into a1 and a2) and C
via B, then the following relationships are evident:

a1
m−→ a2

a1
f−→ B

a2
mi−→ B

B
o−→ C

Computing the relationship between a1 and C, and therefore in part, A and C gives

a1
f−→ B

o−→ C

and hence (see Table 7.2)

a1
o, s, d−→ C

Similarly, computing the relationship between a2 and C and therefore, also in part,
A and C gives

a2
mi−→ B

o−→ C

and hence (see Table 7.2)

a2
d, f, oi−→ C

and therefore by performing a union of both sets of outcomes

A
o, s, d, f, oi−→ C (7.1)

However, given the Variable-Length Midpoint algebra it could be asserted

A
mloi−→ B

and

B
mmo, mlo, lmo, llo−→ C

giving (see Table 7.1)

A
sli, =, sl, mdl, mom, mdf, fl, lloi−→ C (7.2)

Using the Allen transitivity table, with the same example and no midpoint on A would
yield

A
oi−→ B

o−→ C

and therefore (see Table 7.2)

A
o, fi, di, si, =, s, d, f, oi−→ C (7.3)
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If the three sets of outcomes (7.1), (7.2) and (7.3) are compared and the individual
possibilities from the Midpoint outcome grouped to align with the corresponding Allen
relationship then the following is apparent.

Table 7.3: Comparison of outcomes for Allen and midpoint transitive relationships
for Example 7.1.

Outcome 7.1 – Allen Split: o s d f oi

Outcome 7.2 – Midpoint: sli = sl mdl, mom, mdf fl lloi

Outcome 7.3 – Allen No Split: o fi di si = s d f oi

Table 7.3 shows that the Midpoint outcome only returns 3 out of a possible 7 during
constraints, 1 out of a possible 3 finishes, starts and is-started-by constraints, 1 out of
a possible 9 overlap constraints and equals. This represents a far finer-grained set of
constraints than both the spilt version and the non-split version of A both of which
introduce constraints (o, fi, di) for the non-split version and (o) for the split version.
Furthermore, the split version fails to report the possibility of an is-started-by or an
equals constraint. The non-split outcomes are indicative of current real world reporting
practices. �

Example 7.2. Consider also the following example, as illustrated in Figure 7.3:

A
mmoi−→ B

mmo−→ C

which results in the following outcome, see Table 7.1

A
=−→ C (7.4)

C

B

A

Figure 7.3: Expressive power example for two overlapping intervals.

Without introducing additional constraint handling to the algebra (as is the case
with Meiri (1991) and Schwalb and Vila (1998)), splitting the intervals into two sub-
intervals will not allow (within the Allen algebra) A to be seen as equal to C, which is
the case when the midpoint is used because there is no way that the second half of A
can be seen to be the same length as the second half of C. In fact the outcomes when A
is split into a1 and a2 are considerably more numerous than when using the midpoint,
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and if B is also split into b1 and b2 then they are more numerous again. Both of these
scenarios are shown below.

Scenario 1: A only is split, see Table 7.2.

a1
fi−→ B

o−→ C ⇒ a1
o−→ C

a2
mi−→ B

o−→ C ⇒ a2
d, f, oi−→ C

and when the union of these two sets of outcomes is performed then,

A
o, d, f, oi−→ C (7.5)

Scenario 2: Both A and B are split.

Firstly the relationships of both a1 and a2 with b1 and b2

a1
mi−→ b1 & a1

=−→ b2

a2
>−→ b1 & a2

mi−→ b2

secondly the relationships of b1 and b2 with C

b1
m−→ C

b2
s−→ C

which results in

A
mi, =, >−→ B

m, s−→ C

and therefore the set of outcomes, see Table 7.2

A
m, si, =, s, d, f, oi, mi, >−→ C (7.6)

Table 7.4: Comparison of outcomes for Allen and Midpoint transitive relation-
ships for Example 7.2.

Outcome 7.4 – Midpoint: =
Outcome 7.5 – Scenario 1: o d f oi

Outcome 7.6 – Scenario 2: m si = s d f oi mi >

Table 7.4 shows that in this case the results are more conclusive with respect to the
benefits of using the Midpoint model, since Scenario 1 introduces constraints and fails
to report the actual constraint. Scenario 2 does however report the actual constraint
but introduces even more constraints than Scenario 1. �
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7.2.2 Transitivity for Equal-Length Intervals

Equal-length intervals can occur in many situations, for example when data has an
associated time-stamp and the interest lies in episodes that occur within a fixed time
period. This may still be accomplished even when data has no associated time-stamp
since one can be imposed2 and similar results obtained. The limitations on extended
reasoning, with transitivity tables, using such intervals lie in the fact that during, starts,
and finishes relationships can not occur. However, since the midpoint is known, either
explicitly or implied, the possibility of gaining more refined information regarding any
intervals is available using the augmented equal-length midpoint transitivity table.

Proposition 7.2. The Equal-Length Midpoint Interval (ELMI) algebra is more powerful
than the Allen algebra for determining the outcomes from transitive relationships.

Proof: This proof follows directly from the proof for Proposition 7.1 since the equal-
length interval model is a more restrictive case of the variable-length model. �

The following example serves to support Proposition 7.2. The example is a more in
depth treatment of Example 7.3 presented in Chapter 4, page 113.

Example 7.3. Given three episodes A, B, C of equal length and relationships between
them that are some type of overlap relationship then the following is evident:

A
o→ B

o→ C ⇒ A
RELS−→ C

If this was now reasoned to determine A RELS−→ C, using Allen’s algebra the outcome
is as follows and illustrated in Figure 7.4:

A
o→ B

o→ C ⇒ A
<,m,o−→ C

C

B

A

(a) A
<−→ C

C

B

A

(b) A
m−→ C

C

B

A

(c) A
o−→ C

Figure 7.4: Allen outcomes for A→ C when A o−→ B
o−→ C.

However, since the midpoint of the intervals can be inferred by knowing the end-
points the ELMI transitivity table can instead be used to determine the outcomes. In
the most general case, which equates to not knowing any further information regarding
the types of overlap, then there are nine possible combinations of overlap to consider3.

2A method of doing this is presented in Chapter 6.
3For convenience SmallOverlap, MediumOverlap and LargeOverlap will be written as so, mo, and lo

respectively.
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These are: (so, so), (so, mo), (so, lo), (mo, so), (mo, mo), (mo, lo), (lo, so), (lo, mo),
and (lo, lo). However, some of these combinations; (so, so), (so, mo) and (mo, so);
(so, lo) and (lo, so); (mo, lo) and (lo, mo) result in the same outcomes and therefore
there are five unique outcomes possible. These unique outcomes can be grouped into
three broader categories that correspond to a grading of the information gained from
the least to the most. These broad categories are outlined below and are illustrated in
Figure 7.5, Figure 7.6 and Figure 7.7:

1. (A so−→ B
lo−→ C) OR (A lo−→ B

so−→ C)⇒ A
<,m,so−→ C

This corresponds to the least informative set of outcomes, but is still better than
the Allen outcomes because the overlap that would be reported using the Allen
transitivity table has been refined to a SmallOverlap.

C

B

A

(a) A
<−→ C

C

B

A

(b) A
m−→ C

C

B

A

(c) A
so−→ C

Figure 7.5: Equal-Length outcomes for A→ C when A so−→ B
lo−→ C (and

therefore A
<,m,so−→ C).

2. A lo−→ B
lo−→ C ⇒ A

so,mo,lo−→ C

The information gained here is more than that of the Allen outcomes, albeit there
remain three possibilities, however all are overlap relationships – before and meets
have been excluded. In the worst case scenario under this configuration of rela-
tionships the outcome would be reported as overlap, with further refinement one
of the three equal-length midpoint relationships, SmallOverlap, MediumOverlap,
or LargeOverlap could be reported.

C

B

A

(a) A
so−→ C

C

B

A

(b) A
mo−→ C

C

B

A

(c) A
lo−→ C

Figure 7.6: Equal-Length outcomes for A→ C when A lo−→ B
lo−→ C (and

therefore A o→ C).

3. The following three sets of outcomes correspond to the best possible outcomes
since they yield only one outcome in each set.

(a) (A so−→ B
so,mo−→ C) OR (A mo−→ B

so−→ C)⇒ A
<−→ C

(b) A mo−→ B
mo−→ C ⇒ A

m−→ C
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(c) (A mo−→ B
lo−→ C) OR (A lo−→ B

mo−→ C)⇒ A
so−→ C

C

B

A

(a) A
so−→ B

so,mo−→ C ⇒ A
<→ C

C

B

A

(b) A
mo−→ B

mo−→ C ⇒ A
m→ C

C

B

A

(c) A
mo−→ B

lo−→ C ⇒ A
so→ C

Figure 7.7: Best possible Equal-Length outcomes for A→ C.

�

This example, Example 7.3, has served to show the possibilities for increase in
information relating to any transitive relationships that occur between equal-length
intervals when the midpoint is used, and has demonstrated that even using the worst
set of outcomes this increase exists.

7.3 Rule Inference using Transitive Relationships

7.3.1 Rule Inference: An Overview

Rule inference on the results of data mining has been conducted in all major areas
but not all are concerned with temporal inference. Those that have include; Associa-
tion Mining resulting in temporal association rules (Chen, Petrounias and Heathfield,
1998; Chen and Petrounias, 2000; Rainsford and Roddick, 1999; Ale and Rossi, 2000;
Höppner, 2001b, 2002; Winarko and Roddick, 2006), Time Series Mining (Povinelli,
2000; Höppner, 2001a; Mörchen, 2006) and Sequence Mining (Sun, Orlowska and Zhou,
2003; Sun, Orlowska and Li, 2005; Mooney and Roddick, 2004, 2006). The value of
representing rules in this way is that further reasoning can be conducted by means
of transitive relationships and the previous sections have shown the value of such rea-
soning in determining the outcomes for relationships that exist between two intervals,
particularly when the midpoint is known. However, this extended reasoning is not in
general performed and as such, knowledge associated with it (the extended reasoning)
is not gained.

7.3.2 Limiting the Number of Itemsets, Sequences and Rules

As is the case in most forms of data mining, the number of rules produced from a mining
run is large and therefore methods to limit this number, while still reporting rules of
interest, is paramount. These methods include interestingness measures (Sahar, 1999;
Bayardo and Agrawal, 1999; Spiliopoulou, 1999; Hilderman and Hamilton, 2001; Tan,
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Kumar and Srivastava, 2002; Shillabeer and Roddick, 2005) and interactive mining
methods (Parthasarathy et al., 1999; Ceglar, Roddick and Calder, 2003; Lin and Lee,
2004). The former are usually implemented as metrics that are in effect from the start
of the mining run until its completion and may influence the production of itemsets or
sequences, or the rules produced from these. Any change in these metrics require the
full mining run to be repeated using the new values. The latter allow for the user of
the algorithm to ‘interact’ with it and make judgements as to how it should proceed,
thus focussing the output towards the users’ needs.

7.3.3 Outcome Discovery

In the recent past it was argued by Padmanabhan and Tuzhilin (1996) that the rules
from sequence mining lacked expressive power and they introduced rule inference con-
structs based on First Order Temporal Logic (FOTL) that included Since, Until, Next,
Always, Sometimes, Before, After and While, and from this, and the work of Kam
and Fu (2000), Höppner (2001b), Sun et al. (2005) and Roddick and Mooney (2005),
the number of constructs has been extended to include those in the algebra of Allen
(1983). For the progression to continue it is the position of this thesis that the process
of discovering outcomes from any transitive relationships within the results of a mining
run is an area of research that has the potential to deliver knowledge that at present
is under-utilised. One such application area that may benefit is that of medical data
mining where the outcomes, from the mining of the presentation of symptoms and the
progression of the illness in conjunction with the initial battery tests conducted, could
reduce the number of tests and thus potentially save money (Imberman, Domanski and
Thompson, 2002).

7.3.4 Presentation of Outcomes

The presentation of just the temporal relationships that exist between episodes, either
as text or pictorially, does not harness the full power of the temporal logic used to
generate the relationships. The preceding sections have shown that regardless of the
algebra used, more information can be gained by discovering outcomes. For this rea-
son the INTEMTM software supports the discovery and graphical display of sets of
outcomes from a static set of inputs, an example of which is showcased in Section 7.4,
however, an automated method for detecting these outcomes would be of benefit, but
is left for further research. The implications for the implementation of this type of
inference into the software are outlined in the following section.
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7.3.5 Implications Arising from Interacting Episodes

Since there are three classes of interactions that may be discovered – strong, weak and
dependent – the discovery of outcomes must reflect this breakdown in the first instance
since the semantics of the outcomes can be readily inferred when each relationship is of
the same class. However since the definition for both weak and dependent interactions
requires that the first episode be frequent and the second either a viable candidate or
existing due to the discovery process neither an additive or union transitive relationship
is possible.

Proposition 7.3. The definitions of weak and dependent interactions precludes them
from participating in same interaction class transitive relationships.

Proof: In its simplest form an additive transitive relationship takes the following
form: A

rels−→ B
rels−→ C ⇒ A

RELS−→ C. The definition of a weak interaction (see
Definition 5.17) is denoted as follows: ψw[p](ei, ej) | w ∈ R where ei is frequent and
ej is only a valid candidate. The form of an additive transitive relationship requires
that the first episode of each part, in the above case A and B, be frequent which
cannot be the case since B would have to be both frequent and only a valid candidate
simultaneously. The proof for dependent interactions follows directly from this. �

This result then requires that if a transitive relationship includes a weak interaction
then it must be the last interaction which means the valid combinations for any type
of transitive relationship (additive or union) are reduced to the following:

1. All strong interactions, for example:

A
o→ B

d→ C
f→ D ⇒ A

o,s,d−→ D

2. A series of strong interactions followed by one weak interaction, for example:

A
o→ B

d→ C
s[0.85]−→ D ⇒ A

(o,s,d)[0.85]−→ D

3. A series of strong interactions followed by one dependent interaction. This sce-
nario will not arise at present since dependent interactions are currently not re-
ported but any future reporting of these types will require careful consideration
of the semantics of the resultant outcomes.

If an automated system for the discovery of outcomes is to be implemented then
these valid combinations have to be taken into account as would the semantics of any
outcomes produced.



CHAPTER 7. TRANSITIVE RELATIONSHIPS 118

7.4 Visualising the Outcomes from Transitive Relation-

ships

The outcomes from transitive relationships can be numerous and representing them
solely in textual format can make their interpretation difficult. The introduction of an
iconic representation of the Allen temporal intervals that preserved conceptual neigh-
bours by Freksa (1992) enabled the depiction of fine-grained reasoning using coarse
reasoning in an intuitive way, see Figure 3.2 (page 55). The extension of the Freksa
icon as a result of this thesis, see Figure 4.14 (page 77), enables not only fine-grained
(Allen) and coarse reasoning (Freksa) but also a finer-grained (Midpoint) reasoning.
The process of allowing any combination of these types of reasoning for the purpose of
generating outcomes has been incorporated into the INTEMTM application. The fol-
lowing example presents the outcomes for Example 7.1 (page 109), using the extended
icon followed by the Freksa icon with the corresponding Freksa relationship if one ex-
ists. For the second case (VLMI algebra) the Allen/Freksa outcomes are depicted on
the extended icon in green to highlight the finer granularity when using the midpoint
model. This has not been done for the other two sets of outcomes since there is no gain
in using the finer-grained model for coarser inputs.

Recalling the three possible scenarios in this example:

1. A was split into a1 and a2 which resulted in the following:

a1
f−→ B

o−→ C ⇒
A

o,s,d,f,oi−→ C

a2
mi−→ B

o−→ C ⇒
and depicted using the extended icon in Figure 7.8(a) and the Freksa icon in
Figure 7.8(b)

2. The Variable-Length Midpoint algebra was used resulting in the following:

A
mloi−→ B

mmo,mlo,lmo,llo−→ C ⇒ A
sli,=,sl,mdl,mom,mdf,fl,lloi−→ C

and depicted using the extended icon in Figure 7.8(c) and the extended icon in
Figure 7.8(d) to highlight the finer granularity

3. A was not split and no midpoints were used resulting in the following:

A
oi−→ B

o−→ C ⇒ A
o,fi,di,si,=,s,d,f,oi−→ C

and depicted using the extended icon in Figure 7.8(e) and the Freksa icon in
Figure 7.8(f)
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sso smo slo mso

mmo

mlo lso lmo llo

sl sm ss

fdl fom mdl
mom

mdflomldf

fl fm fs

lloi lmoi lsoi mloi

mmoi

msoi sloi smoi ssoi

(a) Item i.- extended icon: A
o,s,d,f,oi−→ C

s

d

f oi

o

(b) Item i - Freksa icon: A
o,s,d,f,oi−→ C

sl

=

sli

mdl
mom

mdf

fl

lloi

(c) Item ii. - extended icon:

A
sli,=,sl,mdl,mom,mdf,fl,lloi−→ C

ssi smi sli

=

sl sm ss

fdl fom mdl
mom

mdflomldf

fl fm fs

lloi lmoi lsoi mloi

mmoi

msoi sloi smoi ssoi

(d) Item ii. - extended icon: A
si,=,s,d,f,oi−→ C

sso smo slo mso

mmo

mlo lso lmo llo

fsi fmi fli

ldfilomimdfi
momi

mdli fomi fdli

ssi smi sli

=

sl sm ss

fdl fom mdl
mom

mdflomldf

fl fm fs

lloi lmoi lsoi mloi

mmoi

msoi sloi smoi ssoi

(e) Item iii. - extended icon:

A
oi→ B

o→ C ⇒ A
o,fi,di,si,=,s,d,f,oi−→ C

s

=

si

d

f oi

di

fio

(f) Item iii. - Freksa icon:

A
oi→ B

o→ C ⇒ A
o,fi,di,si,=,s,d,f,oi−→ C

Freksa’s contemporary of

Figure 7.8: Extended and Freksa icon representations of the outcomes for Exam-
ple 7.1.

7.5 Discussion

This chapter introduced the area of transitive relationships within the framework of
enhancing rule semantics for the results of interacting episode mining, but also with
a view to their use in other areas of data mining. This idea is a novel approach to
enhancement of rule semantics and coupled with the MI algebra introduced in Chapter 4
it has been shown that the outcomes are more fine-grained and in all circumstances more
powerful than when using, for example, Allen’s algebra. These ideas and theoretical
framework have not yet been integrated into any commercial systems but it has been
shown that there is a potential to increase knowledge discovery and as such remains a
significant area of research.

The implications arising from applying this process to interacting episodes also
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raises important issues. This is evident not only with respect to the meaning of any
outcomes produced but also for the potential the integration of fuzzy interval algebras
into the process may afford, as would be the case with weak and dependent relationships.
Acting in concert with any knowledge discovery process is how the results are displayed
and although this chapter has offered one alternative, refer to Appendix B (page 187),
this area also remains one of significant future importance.



Chapter 8

Conclusions and Future Research

The areas of interest that have been explored in this thesis are represented in the
Introduction as shown in Figure 1.1. This thesis explores a significant number of these
areas, but further issues still remain both for the fields on the periphery and those at
the heart of this thesis. Certain boundaries have also been highlighted throughout the
thesis and these are considered now as possible future research tasks.

8.1 Mining Heuristics and Datasets

This thesis pointed out in Chapter 5 that an important consideration is the reporting
of episodes and interactions that are based on frequency metrics, imposed as user-
defined constraints. While this has been shown to produce valuable results it may be
necessary to alter this approach to cater for more diverse data in different domains. This
consideration as well as the introduction of methods to enable the mining of streaming
data will also be of benefit and would enhance the software that has already been
developed for this thesis. The further implementation of timing marks, as discussed
in Chapter 6, would also be of benefit to the enhancements that have already been
mentioned.

8.2 Transitive Relationships

This thesis introduced the area of transitive relationships within the framework of
enhancing rule semantics for the results of interacting episode mining, but also with a
view to their use in other areas of data mining. This idea is a novel approach to the
enhancement of rule semantics and coupled with the MI algebra introduced in Chapter 4
enables complex rules to be discovered. The implications arising from applying this
process to interacting episodes also raises important issues. This is evident not only
with respect to the meaning of any outcomes produced but also for the potential the
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integration of fuzzy interval algebras into the process may afford, as would be the case
with weak and dependent relationships. As has been stated these ideas and theoretical
framework have not yet been integrated into any commercial systems but it has been
shown that there is a potential to increase knowledge discovery and as such this remains
a potential area of future research.

8.3 Development of Visualisation Tools

Acting in concert with any knowledge discovery process are methods for displaying the
results and although this thesis has offered one alternative this area also remains one
of significant future importance. This is very apparent since the lack of tools in this
area has been highlighted in this thesis.

8.4 Application Areas Applicable to this Approach

The Introduction mentioned that one area that was explored as a potential avenue
for this research was text mining, or more appropriately analysing text using sequence
mining methods. Although a multi-level framework has been implemented (Mooney,
de Vries and Roddick, 2004) there remains interesting areas for future research espe-
cially as an incremental and interactive mining problem and also in visualisation. One
technique that could be useful to enhance the edit distance methods currently in use
is the multiple alignment patterns of Kum et al. (2002), but also the use of projected
window lists (Huang et al., 2004) to allow for a move away from only mining contiguous
sequences would be of benefit.

8.5 Conclusion

This thesis has presented a useful method for the discovery of interacting episodes from
temporal sequences and the analysis of them using temporal patterns. It has made
significant contributions to the field of sequence mining, rule based temporal sequence
analysis and the visualisation of these results. The use of the software implemented
as part of this thesis to date has shown significant promise and this suggests that
its application on real world datasets, for example medical records, will be similarly
beneficial.



Appendix A

Transitivity Tables

The purpose of this appendix is act as a repository for the transitivity tables of Allen
(1983), ELMI (Section 4.4) and VLMI (Section 4.5).

The Allen transitivity table, Table A.1, containing 13 entries is presented first. Sec-
ond is the ELMI table, Table A.2, which contains eleven entries – 5 unchanged from Allen
(before (<), meets (m), equals (=), is-met-by (mi), after (>)) – and the six equal-
length overlap relationships - (SmallOverlap (so), MediumOverlap (mo), LargeOverlap
(lo), is-LargeOverlapped-by (loi), is-MediumOverlapped-by (moi), is-SmallOverlapped-
by (soi))

The transitivity table for the 49 VLMI relationships is very large and as such it has
been necessary to split it up into manageable smaller pieces. The points at which it
these splits occur are as follows:

Table A.3 – Before (<) to LargeLargeOverlap (llo), (page 127)
Table A.4 – is-FinishedSmall-by (fsi) to LastContainsFirst-of (fdli), (page 141)
Table A.5 – is-StartedSmall-by (ssi) to StartsSmall (ss), (page 152)
Table A.6 – FirstDuringLast (fdl) to FinishesSmall (fs), (page 158)
Table A.7 – is-LargeLargeOverlapped-by (lloi) to After (>), (page 169)

The symmetry of the transitivity tables, when ordered to preserve conceptual neigh-
bourhoods, was exploited by Freksa (1992) to facilitate coarse reasoning with incom-
plete knowledge. In order to verify the correctness of the complete 49× 49 VLMI tran-
sitivity table, (Tables A.3 to A.7), this symmetric property has also been used. The
verification table is shown in Figure A.1.
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A.1 Allen’s Transitivity Table

Table A.1: Allen’s transitivity table.

< m o fi di si = s d f oi mi >

< < < < < < < < < <, m, o,

s, d

<, m, o,

s, d

<, m, o,

s, d

<, m, o,

s, d

No Info

m < < < < < m m m o, s, d o, s, d o, s, d fi, =, f di, si, oi,

mi, >

o < < <, m, o <, m, o <, m, o,

fi, di

o, fi, di o o o, s, d o, s, d o, fi, di,

si, =, s,

d, f, oi

di, si, oi di, si, oi,

mi, >

fi < m o fi di di fi o o, s, d fi, =, f di, si, oi di, si, oi di, si, oi,

mi, >

di <, m, o,

fi, di

o, fi, di o, fi, di di di di di o, fi, di o, fi, di,

si, =, s,

d, f, oi

di, si, oi di, si, oi di, si, oi di, si, oi,

mi, >

si <, m, o,

fi, di

o, fi, di o, fi, di di di si si si, =, s d, f, oi oi oi mi >

= < m o fi di si = s d f oi mi >
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Table A.1: Allen’s transitivity table – (continued).

< m o fi di si = s d f oi mi >

s < < <, m, o <, m, o <, m, o,

fi, di

si, =, s s s d d d, f, oi mi >

d < < <, m, o,

s, d

<, m, o,

s, d

No Info d, f, oi,

mi, >

d d d d d, f, oi,

mi, >

> >

f < m o, s, d fi, =, f di, si, oi,

mi, >

oi, mi, > f d d f oi, mi, > > >

oi <, m, o,

fi, di

o, fi, di o, fi, di,

si, =, s,

d, f, oi

di, si, oi di, si, oi,

mi, >

oi, mi, > oi d, f, oi d, f, oi oi oi, mi, > > >

mi <, m, o,

fi, di

si, =, s d, f, oi mi > > mi d, f, oi d, f, oi mi > > >

> No Info d, f, oi,

mi, >

d, f, oi,

mi, >

> > > > d, f, oi,

mi, >

d, f, oi,

mi, >

> > > >



A
P

P
E

N
D

IX
A

.
T

R
A

N
S
IT

IV
IT

Y
T
A

B
L
E

S
126

A.2 Equal-Length Interval Midpoint Transitivity Table

Table A.2: Transitivity table for equal-length interval-interval relationships with midpoints.

< m so mo lo = loi moi soi mi >

< < < < < < < <, m, so <, m, so <, m, so,

mo, lo

<, m, so,

mo, lo

No Info

m < < < < < m so mo lo = loi, moi,

soi, mi, >

so < < < < <, m, so so so, mo, lo lo lo, =, loi loi loi, moi,

soi, mi, >

mo < < < m so mo lo = loi moi soi, mi, >

lo < < <, m, so so so, mo, lo lo lo, =, loi loi loi, moi,

soi

soi soi, mi, >

= < m so mo lo = loi moi soi mi >

loi <, m, so so so, mo, lo lo lo, =, loi loi loi, moi,

soi

soi soi, mi, > > >

moi <, m, so mo lo = loi moi soi mi > > >

soi <, m, so,

mo, lo

lo lo, =, loi loi loi, moi,

soi

soi soi, mi, > > > > >

mi <, m, so,

mo, lo

= loi moi soi mi > > > > >

> No Info loi, moi,

soi, mi, >

loi, moi,

soi, mi, >

soi, mi, > soi, mi, > > > > > > >
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A.3 Variable-Length Interval Midpoint Transitivity Table

A.3.1 Before (<) to LargeLargeOverlap (llo)

Table A.3: Before (<) to LargeLargeOverlap (llo).

< m sso smo slo mso mmo mlo lso lmo llo

< < < < < < < < < < < <

m < < < < < < < < < < <

sso < < < < < < < < <, m, sso <, m, sso <, m, sso

smo < < < < < m m m sso sso sso

slo < < <, m, sso <, m, sso <, m, sso,

smo, slo

sso sso sso, smo,

slo

sso sso sso, smo,

slo

mso < < < < < < < < <, m, sso <, m, sso <, m, sso

mmo < < < < < m m m sso sso sso

mlo < < <, m, sso <, m, sso <, m, sso,

smo, slo

sso sso sso, smo,

slo

sso sso sso, smo,

slo

lso < < < < < < < < <, m, sso,

mso, lso

<, m, sso,

mso, lso

<, m, sso,

mso, lso

lmo < < < < < m m m sso, mso,

lso

sso, mso,

lso

sso, mso,

lso
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Table A.3: < to llo – (continued).

< m sso smo slo mso mmo mlo lso lmo llo

llo < < <, m, sso <, m, sso <, m, sso,

smo, slo

sso sso sso, smo,

slo

sso, mso,

lso

sso, mso,

lso

sso, smo,

slo, mso,

mmo,

mlo, lso,

lmo, llo

fsi < m sso smo slo sso smo slo sso smo slo

fmi < m sso smo slo sso smo slo sso smo slo

fli < m sso smo slo sso smo slo sso, mso,

lso

smo,

mmo, lmo

slo, mlo,

llo

ldfi <, m, sso,

smo, slo,

mso,

mmo,

mlo, lso,

lmo, llo,

fsi, fmi,

fli, ldfi,

lomi,

mdfi,

momi,

mdli,

fomi, fdli

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli

ldfi, lomi,

mdfi

ldfi, lomi,

mdfi

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli

ldfi, lomi,

mdfi

ldfi, lomi,

mdfi

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli

ldfi, lomi,

mdfi

ldfi, lomi,

mdfi
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Table A.3: < to llo – (continued).

< m sso smo slo mso mmo mlo lso lmo llo

lomi <, m, sso,

smo, slo,

fsi, fdli

mso,

mmo,

mlo, fmi,

fomi

lso, lmo,

llo, fli,

mdli

momi mdfi lso, lmo,

llo, fli,

mdli

momi mdfi lso, lmo,

llo, fli,

mdli

momi mdfi

mdfi <, m, sso,

smo, slo,

fsi, fdli

sso, smo,

slo, fsi,

fdli

sso, smo,

slo, mso,

mmo,

mlo, lso,

lmo, llo,

fsi, fmi,

fli, mdli,

fomi, fdli

slo, mlo,

llo, fsi,

fmi, fli,

mdli,

fomi, fdli

slo, mlo,

llo, fsi,

fmi, fli,

mdfi,

momi,

mdli,

fomi, fdli

lso, lmo,

llo, fli,

mdli

llo, fli,

mdli

llo, fli,

mdfi,

momi,

mdli

lso, lmo,

llo, fli,

mdli

llo, fli,

mdli

llo, fli,

mdfi,

momi,

mdli

momi <, m, sso,

smo, slo,

fsi, fdli

sso, smo,

slo, fsi,

fdli

sso, smo,

slo, fsi,

fdli

slo, fsi,

fdli

slo, fsi,

fdli

mso,

mmo,

mlo, fmi,

fomi

mlo, fmi,

fomi

mlo, fmi,

fomi

lso, lmo,

llo, fli,

mdli

llo, fli,

mdli

llo, fli,

mdli

mdli <, m, sso,

smo, slo,

fsi, fdli

sso, smo,

slo, fsi,

fdli

sso, smo,

slo, fsi,

fdli

slo, fsi,

fdli

slo, fsi,

fdli

sso, smo,

slo, fsi,

fdli

slo, fsi,

fdli

slo, fsi,

fdli

sso, smo,

slo, mso,

mmo,

mlo, lso,

lmo, llo,

fsi, fmi,

fli, mdli,

fomi, fdli

slo, mlo,

llo, fsi,

fmi, fli,

mdli,

fomi, fdli

slo, mlo,

llo, fsi,

fmi, fli,

mdli,

fomi, fdli
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Table A.3: < to llo – (continued).

< m sso smo slo mso mmo mlo lso lmo llo

fomi <, m, sso,

smo, slo,

fsi, fdli

sso, smo,

slo, fsi,

fdli

sso, smo,

slo, fsi,

fdli

slo, fsi,

fdli

slo, fsi,

fdli

sso, smo,

slo, fsi,

fdli

slo, fsi,

fdli

slo, fsi,

fdli

sso, smo,

slo, fsi,

fdli

slo, fsi,

fdli

slo, fsi,

fdli

fdli <, m, sso,

smo, slo,

fsi, fdli

sso, smo,

slo, fsi,

fdli

sso, smo,

slo, fsi,

fdli

slo, fsi,

fdli

slo, fsi,

fdli

sso, smo,

slo, fsi,

fdli

slo, fsi,

fdli

slo, fsi,

fdli

sso, smo,

slo, fsi,

fdli

slo, fsi,

fdli

slo, fsi,

fdli

ssi <, m, sso,

smo, slo,

mso,

mmo,

mlo, lso,

lmo, llo,

fsi, fmi,

fli, ldfi,

lomi,

mdfi,

momi,

mdli,

fomi, fdli

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli

ldfi, lomi,

mdfi

ldfi, lomi,

mdfi

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli

ldfi, lomi,

mdfi

ldfi, lomi,

mdfi

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli

ldfi, lomi,

mdfi

ldfi, lomi,

mdfi
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Table A.3: < to llo – (continued).

< m sso smo slo mso mmo mlo lso lmo llo

smi <, m, sso,

smo, slo,

fsi, fdli

mso,

mmo,

mlo, fmi,

fomi

lso, lmo,

llo, fli,

mdli

momi mdfi lso, lmo,

llo, fli,

mdli

momi mdfi lso, lmo,

llo, fli,

mdli

momi mdfi

sli <, m, sso,

smo, slo,

fsi, fdli

sso, smo,

slo, fsi,

fdli

sso, smo,

slo, mso,

mmo,

mlo, lso,

lmo, llo,

fsi, fmi,

fli, mdli,

fomi, fdli

slo, mlo,

llo, fsi,

fmi, fli,

mdli,

fomi, fdli

slo, mlo,

llo, fsi,

fmi, fli,

mdfi,

momi,

mdli,

fomi, fdli

lso, lmo,

llo, fli,

mdli

llo, fli,

mdli

llo, fli,

mdfi,

momi,

mdli

lso, lmo,

llo, fli,

mdli

llo, fli,

mdli

llo, fli,

mdfi,

momi,

mdli

= < m sso smo slo mso mmo mlo lso lmo llo

sl < < <, m, sso <, m, sso <, m, sso,

smo, slo

sso sso sso, smo,

slo

sso, mso,

lso

sso, mso,

lso

sso, smo,

slo, mso,

mmo,

mlo, lso,

lmo, llo

sm < < < < < m m m sso, mso,

lso

sso, mso,

lso

sso, mso,

lso

ss < < < < < < < < <, m, sso,

mso, lso

<, m, sso,

mso, lso

<, m, sso,

mso, lso
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Table A.3: < to llo – (continued).

< m sso smo slo mso mmo mlo lso lmo llo

fdl < < <, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

smo, slo,

mso,

mmo,

mlo, lso,

lmo, llo,

sl, sm, ss,

fdl, fom,

mdl,

mom,

mdf, lom,

ldf

ldf ldf fdl, fom,

mdl,

mom,

mdf, lom,

ldf

ldf ldf fdl, fom,

mdl,

mom,

mdf, lom,

ldf

fom < < <, m, sso,

mso, lso

<, m, sso,

mso, lso

<, m, sso,

smo, slo,

mso,

mmo,

mlo, lso,

lmo, llo

ss ss sl, sm, ss ldf ldf mdl,

mom,

mdf, lom,

ldf

mdl < < <, m, sso,

mso, lso

<, m, sso,

mso, lso

<, m, sso,

smo, slo,

mso,

mmo,

mlo, lso,

lmo, llo

lso lso lso, lmo,

llo

lso, ss, ldf lso, ss, ldf lso, lmo,

llo, sl, sm,

ss, mdl,

mom,

mdf, lom,

ldf
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Table A.3: < to llo – (continued).

< m sso smo slo mso mmo mlo lso lmo llo

mom < < <, m, sso <, m, sso <, m, sso,

smo, slo

mso mso mso,

mmo, mlo

lso, ss, ldf lso, ss, ldf lso, lmo,

llo, sl, sm,

ss, mdf,

lom, ldf

mdf < < <, m, sso <, m, sso <, m, sso,

smo, slo

sso sso sso, smo,

slo

sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

sso, smo,

slo, mso,

mmo,

mlo, lso,

lmo, llo,

sl, sm, ss,

mdf, lom,

ldf

lom < < < < < m m m sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

ldf < < < < < < < < <, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

fl < m sso, mso,

lso

smo,

mmo, lmo

slo, mlo,

llo

lso lmo llo lso, ss, ldf lmo, sm,

lom

llo, sl,

mdl,

mom, mdf

fm < m sso, mso,

lso

smo,

mmo, lmo

slo, mlo,

llo

ss sm sl ldf lom mdl,

mom, mdf
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Table A.3: < to llo – (continued).

< m sso smo slo mso mmo mlo lso lmo llo

fs < m sso, mso,

lso, ss, ldf

smo,

mmo,

lmo, sm,

lom

slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

ldf lom fdl, fom,

mdl,

mom, mdf

ldf lom fdl, fom,

mdl,

mom, mdf

lloi <, m, sso,

smo, slo,

fsi, fdli

sso, smo,

slo, fsi,

fdli

sso, smo,

slo, mso,

mmo,

mlo, lso,

lmo, llo,

fsi, fmi,

fli, mdli,

fomi, fdli

slo, mlo,

llo, fsi,

fmi, fli,

mdli,

fomi, fdli

slo, mlo,

llo, fsi,

fmi, fli,

mdfi,

momi,

mdli,

fomi, fdli

lso, lmo,

llo, fli,

mdli

llo, fli,

mdli

llo, fli,

mdfi,

momi,

mdli

lso, lmo,

llo, fli,

mdli, sl,

sm, ss,

mdf, lom,

ldf

llo, fli,

mdli, sl,

mdf

llo, fli,

mdfi,

momi,

mdli, sli,

=, sl, mdl,

mom,

mdf, fl,

lloi

lmoi <, m, sso,

smo, slo,

fsi, fdli

mso,

mmo,

mlo, fmi,

fomi

lso, lmo,

llo, fli,

mdli

momi mdfi lso, lmo,

llo, fli,

mdli

momi mdfi lso, lmo,

llo, fli,

mdli, sl,

sm, ss,

mdf, lom,

ldf

momi, =,

mom

mdfi, sli,

mdl, fl,

lloi
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Table A.3: < to llo – (continued).

< m sso smo slo mso mmo mlo lso lmo llo

lsoi <, m, sso,

smo, slo,

mso,

mmo,

mlo, lso,

lmo, llo,

fsi, fmi,

fli, ldfi,

lomi,

mdfi,

momi,

mdli,

fomi, fdli

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli

ldfi, lomi,

mdfi

ldfi, lomi,

mdfi

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli

ldfi, lomi,

mdfi

ldfi, lomi,

mdfi

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli, ssi,

smi, sli,

=, sl, sm,

ss, mdl,

mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

mdl, fl,

lloi, lmoi,

lsoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

mdl, fl,

lloi, lmoi,

lsoi

mloi <, m, sso,

smo, slo,

fsi, fdli

sso, smo,

slo, fsi,

fdli

sso, smo,

slo, mso,

mmo,

mlo, lso,

lmo, llo,

fsi, fmi,

fli, mdli,

fomi, fdli

slo, mlo,

llo, fsi,

fmi, fli,

mdli,

fomi, fdli

slo, mlo,

llo, fsi,

fmi, fli,

mdfi,

momi,

mdli,

fomi, fdli

sl, sm, ss sl sli, =, sl mdf, lom,

ldf

mdf mdl,

mom,

mdf, fl,

lloi
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Table A.3: < to llo – (continued).

< m sso smo slo mso mmo mlo lso lmo llo

mmoi <, m, sso,

smo, slo,

fsi, fdli

mso,

mmo,

mlo, fmi,

fomi

lso, lmo,

llo, fli,

mdli

momi mdfi sl, sm, ss = sli mdf, lom,

ldf

mom mdl, fl,

lloi

msoi <, m, sso,

smo, slo,

mso,

mmo,

mlo, lso,

lmo, llo,

fsi, fmi,

fli, ldfi,

lomi,

mdfi,

momi,

mdli,

fomi, fdli

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli

ldfi, lomi,

mdfi

ldfi, lomi,

mdfi

ssi, smi,

sli, =, sl,

sm, ss

ssi, smi,

sli

ssi, smi,

sli

mdl,

mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

mdl, fl,

lloi, lmoi,

lsoi

mdl, fl,

lloi, lmoi,

lsoi
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Table A.3: < to llo – (continued).

< m sso smo slo mso mmo mlo lso lmo llo

sloi <, m, sso,

smo, slo,

fsi, fdli

sso, smo,

slo, fsi,

fdli

sso, smo,

slo, mso,

mmo,

mlo, lso,

lmo, llo,

fsi, fmi,

fli, mdli,

fomi, fdli,

sl, sm, ss,

mdf, lom,

ldf

slo, mlo,

llo, fsi,

fmi, fli,

mdli,

fomi, fdli,

sl, mdf

slo, mlo,

llo, fsi,

fmi, fli,

mdfi,

momi,

mdli,

fomi, fdli,

sli, =, sl,

fdl, fom,

mdl,

mom,

mdf, fl,

fm, fs, lloi,

mloi, sloi

mdf, lom,

ldf

mdf fdl, fom,

mdl,

mom,

mdf, fl,

fm, fs, lloi,

mloi, sloi

mdf, lom,

ldf

mdf fdl, fom,

mdl,

mom,

mdf, fl,

fm, fs, lloi,

mloi, sloi
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Table A.3: < to llo – (continued).

< m sso smo slo mso mmo mlo lso lmo llo

smoi <, m, sso,

smo, slo,

fsi, fdli

mso,

mmo,

mlo, fmi,

fomi

lso, lmo,

llo, fli,

mdli, sl,

sm, ss,

mdf, lom,

ldf

momi, =,

mom

mdfi, sli,

fdl, fom,

mdl, fl,

fm, fs, lloi,

mloi, sloi

mdf, lom,

ldf

mom fdl, fom,

mdl, fl,

fm, fs, lloi,

mloi, sloi

mdf, lom,

ldf

mom fdl, fom,

mdl, fl,

fm, fs, lloi,

mloi, sloi

ssoi <, m, sso,

smo, slo,

mso,

mmo,

mlo, lso,

lmo, llo,

fsi, fmi,

fli, ldfi,

lomi,

mdfi,

momi,

mdli,

fomi, fdli

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli, ssi,

smi, sli,

=, sl, sm,

ss, mdl,

mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

mdl, fl,

lloi, lmoi,

lsoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

fdl, fom,

mdl, fl,

fm, fs,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

mdl,

mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

mdl, fl,

lloi, lmoi,

lsoi

fdl, fom,

mdl, fl,

fm, fs,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

mdl,

mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

mdl, fl,

lloi, lmoi,

lsoi

fdl, fom,

mdl, fl,

fm, fs,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi
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Table A.3: < to llo – (continued).

< m sso smo slo mso mmo mlo lso lmo llo

mi <, m, sso,

smo, slo,

mso,

mmo,

mlo, lso,

lmo, llo,

fsi, fmi,

fli, ldfi,

lomi,

mdfi,

momi,

mdli,

fomi, fdli

ssi, smi,

sli, =, sl,

sm, ss

mdl,

mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

fom, fm,

mloi,

mmoi,

msoi

fdl, fs,

sloi, smoi,

ssoi

mdl,

mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

fom, fm,

mloi,

mmoi,

msoi

fdl, fs,

sloi, smoi,

ssoi

mdl,

mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

fom, fm,

mloi,

mmoi,

msoi

fdl, fs,

sloi, smoi,

ssoi
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Table A.3: < to llo – (continued).

< m sso smo slo mso mmo mlo lso lmo llo

> No Info fdl, fom,

mdl,

mom,

mdf, lom,

ldf, fl, fm,

fs, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

fdl, fom,

mdl,

mom,

mdf, lom,

ldf, fl, fm,

fs, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

fdl, fs,

sloi, smoi,

ssoi, mi,

>

fdl, fs,

sloi, smoi,

ssoi, mi,

>

fdl, fom,

mdl,

mom,

mdf, lom,

ldf, fl, fm,

fs, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

fdl, fs,

sloi, smoi,

ssoi, mi,

>

fdl, fs,

sloi, smoi,

ssoi, mi,

>

fdl, fom,

mdl,

mom,

mdf, lom,

ldf, fl, fm,

fs, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

fdl, fs,

sloi, smoi,

ssoi, mi,

>

fdl, fs,

sloi, smoi,

ssoi, mi,

>
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A.3.2 is-FinishedSmall-by (fsi) to LastContainsFirst-of (fdli)

Table A.4: is-FinishedSmall-by (fsi) to LastContainsFirst-of (fdli).

fsi fmi fli ldfi lomi mdfi momi mdli fomi fdli

< < < < < < < < < < <

m < < < < < < < < < <

sso < < <, m, sso <, m, sso,

smo, slo,

fsi, fdli

<, m, sso,

smo, slo

<, m, sso,

smo, slo

<, m, sso <, m, sso < <

smo < m sso fdli fsi slo smo sso m <

slo <, m, sso,

smo, slo

sso, smo,

slo

sso, smo,

slo

fdli fdli slo, fsi, fdli slo, fsi, fdli sso, smo,

slo, fsi, fdli

sso, smo,

slo, fsi, fdli

<, m, sso,

smo, slo,

fsi, fdli

mso < < <, m, sso <, m, sso,

smo, slo,

fsi, fdli

<, m, sso,

smo, slo

<, m, sso,

smo, slo

<, m, sso <, m, sso < <

mmo < m sso fdli fsi slo smo sso m <

mlo <, m, sso,

smo, slo

sso, smo,

slo

sso, smo,

slo

fdli fdli slo, fsi, fdli slo, fsi, fdli sso, smo,

slo, fsi, fdli

sso, smo,

slo, fsi, fdli

<, m, sso,

smo, slo,

fsi, fdli
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Table A.4: fsi to fdli – (continued).

fsi fmi fli ldfi lomi mdfi momi mdli fomi fdli

lso < < <, m, sso,

mso, lso

<, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo,

fsi, fmi, fli,

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli

<, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo

<, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo

<, m, sso,

mso, lso

<, m, sso,

mso, lso

< <

lmo < m sso, mso,

lso

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli

fsi, fmi, fli slo, mlo, llo smo, mmo,

lmo

sso, mso,

lso

m <

llo <, m, sso,

smo, slo

sso, smo,

slo

sso, smo,

slo, mso,

mmo, mlo,

lso, lmo, llo

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli

mdfi,

momi,

mdli, fomi,

fdli

slo, mlo,

llo, fsi, fmi,

fli, mdfi,

momi,

mdli, fomi,

fdli

slo, mlo,

llo, fsi, fmi,

fli, mdli,

fomi, fdli

sso, smo,

slo, mso,

mmo, mlo,

lso, lmo,

llo, fsi, fmi,

fli, mdli,

fomi, fdli

sso, smo,

slo, fsi, fdli

<, m, sso,

smo, slo,

fsi, fdli
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Table A.4: fsi to fdli – (continued).

fsi fmi fli ldfi lomi mdfi momi mdli fomi fdli

fsi fsi fsi fsi fdli fdli fdli fdli fdli fdli fdli

fmi fsi fsi fsi fdli fdli fdli fdli fdli fdli fdli

fli fsi fsi fsi, fmi, fli ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli

mdfi,

momi,

mdli, fomi,

fdli

mdfi,

momi,

mdli, fomi,

fdli

mdli, fomi,

fdli

mdli, fomi,

fdli

fdli fdli

ldfi ldfi ldfi ldfi ldfi ldfi ldfi ldfi ldfi ldfi ldfi

lomi lomi lomi lomi ldfi ldfi ldfi ldfi ldfi ldfi ldfi

mdfi mdfi,

momi,

mdli, fomi,

fdli

mdfi,

momi, mdli

mdfi,

momi, mdli

ldfi ldfi ldfi, lomi,

mdfi

ldfi, lomi,

mdfi

ldfi, lomi,

mdfi,

momi, mdli

ldfi, lomi,

mdfi,

momi, mdli

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli

momi fdli fomi mdli ldfi lomi mdfi momi mdli fomi fdli

mdli fdli fdli mdli, fomi,

fdli

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli

mdfi,

momi,

mdli, fomi,

fdli

mdfi,

momi,

mdli, fomi,

fdli

mdli, fomi,

fdli

mdli, fomi,

fdli

fdli fdli
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Table A.4: fsi to fdli – (continued).

fsi fmi fli ldfi lomi mdfi momi mdli fomi fdli

fomi fdli fdli fdli fdli fdli fdli fdli fdli fdli fdli

fdli fdli fdli fdli fdli fdli fdli fdli fdli fdli fdli

ssi ldfi ldfi ldfi ldfi ldfi ldfi ldfi ldfi ldfi ldfi

smi lomi lomi lomi ldfi ldfi ldfi ldfi ldfi ldfi ldfi

sli mdfi,

momi,

mdli, fomi,

fdli

mdfi,

momi, mdli

mdfi,

momi, mdli

ldfi ldfi ldfi, lomi,

mdfi

ldfi, lomi,

mdfi

ldfi, lomi,

mdfi,

momi, mdli

ldfi, lomi,

mdfi,

momi, mdli

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli

= fsi fmi fli ldfi lomi mdfi momi mdli fomi fdli

sl <, m, sso,

smo, slo

sso, smo,

slo

sso, smo,

slo, mso,

mmo, mlo,

lso, lmo, llo

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli

mdfi,

momi,

mdli, fomi,

fdli

slo, mlo,

llo, fsi, fmi,

fli, mdfi,

momi,

mdli, fomi,

fdli

slo, mlo,

llo, fsi, fmi,

fli, mdli,

fomi, fdli

sso, smo,

slo, mso,

mmo, mlo,

lso, lmo,

llo, fsi, fmi,

fli, mdli,

fomi, fdli

sso, smo,

slo, fsi, fdli

<, m, sso,

smo, slo,

fsi, fdli

sm < m sso, mso,

lso

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli

fsi, fmi, fli slo, mlo, llo smo, mmo,

lmo

sso, mso,

lso

m <
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Table A.4: fsi to fdli – (continued).

fsi fmi fli ldfi lomi mdfi momi mdli fomi fdli

ss < < <, m, sso,

mso, lso

<, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo,

fsi, fmi, fli,

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli

<, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo

<, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo

<, m, sso,

mso, lso

<, m, sso,

mso, lso

< <

fdl <, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo, sl,

sm, ss, fdl,

fom, mdl,

mom, mdf,

lom, ldf

fdl, fom,

mdl, mom,

mdf, lom,

ldf

fdl, fom,

mdl, mom,

mdf, lom,

ldf

> > fdl, fs, sloi,

smoi, ssoi,

mi, >

fdl, fs, sloi,

smoi, ssoi,

mi, >

fdl, fom,

mdl, mom,

mdf, lom,

ldf, fl, fm,

fs, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

fdl, fom,

mdl, mom,

mdf, lom,

ldf, fl, fm,

fs, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

No Info
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Table A.4: fsi to fdli – (continued).

fsi fmi fli ldfi lomi mdfi momi mdli fomi fdli

fom <, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo

sl, sm, ss mdl, mom,

mdf, lom,

ldf

> mi fdl, fs, sloi,

smoi, ssoi

fom, fm,

mloi,

mmoi, msoi

mdl, mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

ssi, smi, sli,

=, sl, sm,

ss

<, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo,

fsi, fmi, fli,

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli

mdl <, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo

lso, lmo, llo lso, lmo,

llo, sl, sm,

ss, mdl,

mom, mdf,

lom, ldf

ldfi, ssi,

lsoi, msoi,

ssoi, mi, >

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, lomi,

mdfi, ssi,

smi, sli, fdl,

fom, mdl,

fl, fm, fs,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

mdl, fl, lloi,

lmoi, lsoi

lso, lmo,

llo, fli, ldfi,

lomi, mdfi,

momi,

mdli, ssi,

smi, sli, =,

sl, sm, ss,

mdl, mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

lso, lmo,

llo, fli, ldfi,

lomi, mdfi,

momi, mdli

<, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo,

fsi, fmi, fli,

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli
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Table A.4: fsi to fdli – (continued).

fsi fmi fli ldfi lomi mdfi momi mdli fomi fdli

mom <, m, sso,

smo, slo

mso, mmo,

mlo

lso, lmo,

llo, sl, sm,

ss, mdf,

lom, ldf

ldfi, ssi,

lsoi, msoi,

ssoi, mi, >

lomi, smi,

lmoi,

mmoi, smoi

mdfi, sli,

fdl, fom,

mdl, fl, fm,

fs, lloi,

mloi, sloi

momi, =,

mom

lso, lmo,

llo, fli,

mdli, sl,

sm, ss,

mdf, lom,

ldf

mso, mmo,

mlo, fmi,

fomi

<, m, sso,

smo, slo,

fsi, fdli

mdf <, m, sso,

smo, slo

sso, smo,

slo

sso, smo,

slo, mso,

mmo, mlo,

lso, lmo,

llo, sl, sm,

ss, mdf,

lom, ldf

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli, ssi,

smi, sli,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

mdfi,

momi,

mdli, fomi,

fdli, sli,

lloi, mloi,

sloi

slo, mlo,

llo, fsi, fmi,

fli, mdfi,

momi,

mdli, fomi,

fdli, sli, =,

sl, fdl, fom,

mdl, mom,

mdf, fl, fm,

fs, lloi,

mloi, sloi

slo, mlo,

llo, fsi, fmi,

fli, mdli,

fomi, fdli,

sl, mdf

sso, smo,

slo, mso,

mmo, mlo,

lso, lmo,

llo, fsi, fmi,

fli, mdli,

fomi, fdli,

sl, sm, ss,

mdf, lom,

ldf

sso, smo,

slo, fsi, fdli

<, m, sso,

smo, slo,

fsi, fdli
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Table A.4: fsi to fdli – (continued).

fsi fmi fli ldfi lomi mdfi momi mdli fomi fdli

lom < m sso, mso,

lso, ss, ldf

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli, ssi,

smi, sli,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

fsi, fmi, fli,

=, fl, fm, fs

slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

smo, mmo,

lmo, sm,

lom

sso, mso,

lso, ss, ldf

m <

ldf < < <, m, sso,

mso, lso,

ss, ldf

No Info <, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo, sl,

sm, ss, fdl,

fom, mdl,

mom, mdf,

lom, ldf

<, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo, sl,

sm, ss, fdl,

fom, mdl,

mom, mdf,

lom, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

< <
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Table A.4: fsi to fdli – (continued).

fsi fmi fli ldfi lomi mdfi momi mdli fomi fdli

fl fsi, fmi, fli fli fli, =, fl ldfi, ssi,

lsoi, msoi,

ssoi, mi, >

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi

ldfi, lomi,

mdfi,

momi,

mdli, ssi,

smi, sli,

lloi, lmoi,

lsoi

ldfi, lomi,

mdfi,

momi, mdli

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli

fm fsi, fmi, fli = fl > mi sloi, smoi,

ssoi

mloi,

mmoi, msoi

lloi, lmoi,

lsoi

ssi, smi, sli ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli

fs fsi, fmi, fli,

=, fl, fm, fs

fl, fm, fs fl, fm, fs > > sloi, smoi,

ssoi, mi, >

sloi, smoi,

ssoi, mi, >

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli, ssi,

smi, sli,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >
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Table A.4: fsi to fdli – (continued).

fsi fmi fli ldfi lomi mdfi momi mdli fomi fdli

lloi mdfi,

momi,

mdli, fomi,

fdli

mdfi,

momi, mdli

mdfi,

momi,

mdli, sli,

lloi

ldfi, ssi,

lsoi, msoi,

ssoi, mi, >

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi

ldfi, lomi,

mdfi,

momi,

mdli, ssi,

smi, sli,

lloi, lmoi,

lsoi

ldfi, lomi,

mdfi,

momi, mdli

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli

lmoi lomi lomi lomi, smi,

lmoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi, >

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi, lsoi ldfi, ssi, lsoi ldfi ldfi

lsoi ldfi ldfi ldfi, ssi, lsoi ldfi, ssi,

lsoi, msoi,

ssoi, mi, >

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi, lsoi ldfi, ssi, lsoi ldfi ldfi

mloi mdfi,

momi,

mdli, fomi,

fdli

sli lloi > mi sloi, smoi,

ssoi

mloi,

mmoi, msoi

lloi, lmoi,

lsoi

ssi, smi, sli ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli
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Table A.4: fsi to fdli – (continued).

fsi fmi fli ldfi lomi mdfi momi mdli fomi fdli

mmoi lomi smi lmoi > mi ssoi msoi lsoi ssi ldfi

msoi ldfi ssi lsoi > mi ssoi msoi lsoi ssi ldfi

sloi mdfi,

momi,

mdli, fomi,

fdli, sli,

lloi, mloi,

sloi

lloi, mloi,

sloi

lloi, mloi,

sloi

> > sloi, smoi,

ssoi, mi, >

sloi, smoi,

ssoi, mi, >

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

ldfi, lomi,

mdfi,

momi,

mdli, fomi,

fdli, ssi,

smi, sli,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

smoi lomi, smi,

lmoi,

mmoi, smoi

lmoi,

mmoi, smoi

lmoi,

mmoi, smoi

> > ssoi, mi, > ssoi, mi, > lsoi, msoi,

ssoi, mi, >

lsoi, msoi,

ssoi, mi, >

ldfi, ssi,

lsoi, msoi,

ssoi, mi, >

ssoi ldfi, ssi,

lsoi, msoi,

ssoi

lsoi, msoi,

ssoi

lsoi, msoi,

ssoi

> > ssoi, mi, > ssoi, mi, > lsoi, msoi,

ssoi, mi, >

lsoi, msoi,

ssoi, mi, >

ldfi, ssi,

lsoi, msoi,

ssoi, mi, >

mi mi mi mi > > > > > > >

> > > > > > > > > > >
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A.3.3 is-StartedSmall-by (ssi) to StartsSmall (ss)

Table A.5: is-StartedSmall-by (ssi) to StartsSmall (ss).

ssi smi sli = sl sm ss

< < < < < < < <

m m m m m m m m

sso sso, smo, slo, fsi,

fdli

sso, smo, slo sso, smo, slo sso sso sso sso

smo fdli fsi slo smo sso sso sso

slo fdli fdli slo, fsi, fdli slo sso, smo, slo sso sso

mso mso, mmo, mlo,

fmi, fomi

mso, mmo, mlo mso, mmo, mlo mso mso mso mso

mmo fomi fmi mlo mmo mso mso mso

mlo fomi fomi mlo, fmi, fomi mlo mso, mmo, mlo mso mso

lso lso, lmo, llo, fli,

ldfi, lomi, mdfi,

momi, mdli

lso, lmo, llo lso, lmo, llo lso lso lso lso

lmo ldfi, lomi, mdfi,

momi, mdli

fli llo lmo lso lso lso

llo ldfi, lomi, mdfi,

momi, mdli

mdfi, momi, mdli llo, fli, mdfi,

momi, mdli

llo lso, lmo, llo lso lso

fsi fdli fdli fdli fsi slo smo sso
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Table A.5: ssi to ss – (continued).

ssi smi sli = sl sm ss

fmi fomi fomi fomi fmi mlo mmo mso

fli ldfi, lomi, mdfi,

momi, mdli

mdfi, momi, mdli mdfi, momi, mdli fli llo lmo lso

ldfi ldfi ldfi ldfi ldfi ldfi, lomi, mdfi ldfi, lomi, mdfi lso, lmo, llo, fli,

ldfi, lomi, mdfi,

momi, mdli

lomi ldfi ldfi ldfi lomi mdfi momi lso, lmo, llo, fli,

mdli

mdfi ldfi ldfi ldfi, lomi, mdfi mdfi llo, fli, mdfi,

momi, mdli

llo, fli, mdli lso, lmo, llo, fli,

mdli

momi ldfi lomi mdfi momi llo, fli, mdli llo, fli, mdli lso, lmo, llo, fli,

mdli

mdli ldfi, lomi, mdfi,

momi, mdli

mdfi, momi, mdli mdfi, momi, mdli mdli llo, fli, mdli llo, fli, mdli lso, lmo, llo, fli,

mdli

fomi fomi fomi fomi fomi mlo, fmi, fomi mlo, fmi, fomi mso, mmo, mlo,

fmi, fomi

fdli fdli fdli fdli fdli slo, fsi, fdli slo, fsi, fdli sso, smo, slo, fsi,

fdli

ssi ssi ssi ssi ssi ssi, smi, sli ssi, smi, sli ssi, smi, sli, =, sl,

sm, ss

smi ssi ssi ssi smi sli = sl, sm, ss

sli ssi ssi ssi, smi, sli sli sli, =, sl sl sl, sm, ss
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Table A.5: ssi to ss – (continued).

ssi smi sli = sl sm ss

= ssi smi sli = sl sm ss

sl ssi, smi, sli sli sli, =, sl sl sl, sm, ss ss ss

sm ssi, smi, sli = sl sm ss ss ss

ss ssi, smi, sli, =, sl,

sm, ss

sl, sm, ss sl, sm, ss ss ss ss ss

fdl > > fdl, fs, sloi, smoi,

ssoi, mi, >

fdl fdl, fom, mdl,

mom, mdf, lom,

ldf

ldf ldf

fom > mi fdl, fs, sloi, smoi,

ssoi

fom mdl, mom, mdf,

lom, ldf

ldf ldf

mdl lsoi, msoi, ssoi,

mi, >

lsoi, msoi, ssoi fdl, fom, mdl, fl,

fm, fs, lloi, lmoi,

lsoi, mloi, mmoi,

msoi, sloi, smoi,

ssoi

mdl mdl, mom, mdf,

lom, ldf

ldf ldf

mom lsoi, msoi, ssoi,

mi, >

lmoi, mmoi, smoi fdl, fom, mdl, fl,

fm, fs, lloi, mloi,

sloi

mom mdf, lom, ldf ldf ldf

mdf lloi, lmoi, lsoi,

mloi, mmoi,

msoi, sloi, smoi,

ssoi, mi, >

lloi, mloi, sloi fdl, fom, mdl,

mom, mdf, fl, fm,

fs, lloi, mloi, sloi

mdf mdf, lom, ldf ldf ldf
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Table A.5: ssi to ss – (continued).

ssi smi sli = sl sm ss

lom lloi, lmoi, lsoi,

mloi, mmoi,

msoi, sloi, smoi,

ssoi, mi, >

fl, fm, fs fdl, fom, mdl,

mom, mdf

lom ldf ldf ldf

ldf fdl, fom, mdl,

mom, mdf, lom,

ldf, fl, fm, fs, lloi,

lmoi, lsoi, mloi,

mmoi, msoi, sloi,

smoi, ssoi, mi, >

fdl, fom, mdl,

mom, mdf, lom,

ldf

fdl, fom, mdl,

mom, mdf, lom,

ldf

ldf ldf ldf ldf

fl lsoi, msoi, ssoi,

mi, >

lsoi, msoi, ssoi lloi, lmoi, lsoi,

mloi, mmoi,

msoi, sloi, smoi,

ssoi

fl mdl, mom, mdf lom ldf

fm > mi sloi, smoi, ssoi fm mdl, mom, mdf lom ldf

fs > > sloi, smoi, ssoi,

mi, >

fs fdl, fom, mdl,

mom, mdf

lom ldf

lloi lsoi, msoi, ssoi,

mi, >

lsoi, msoi, ssoi lloi, lmoi, lsoi,

mloi, mmoi,

msoi, sloi, smoi,

ssoi

lloi mdl, mom, mdf,

fl, lloi

mdf mdf, lom, ldf
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Table A.5: ssi to ss – (continued).

ssi smi sli = sl sm ss

lmoi lsoi, msoi, ssoi,

mi, >

lsoi, msoi, ssoi lsoi, msoi, ssoi lmoi mdl, fl, lloi mom mdf, lom, ldf

lsoi lsoi, msoi, ssoi,

mi, >

lsoi, msoi, ssoi lsoi, msoi, ssoi lsoi mdl, fl, lloi, lmoi,

lsoi

mdl, fl, lloi, lmoi,

lsoi

mdl, mom, mdf,

lom, ldf, fl, lloi,

lmoi, lsoi

mloi > mi sloi, smoi, ssoi mloi mdl, mom, mdf,

fl, lloi

mdf mdf, lom, ldf

mmoi > mi ssoi mmoi mdl, fl, lloi mom mdf, lom, ldf

msoi > mi ssoi msoi mdl, fl, lloi, lmoi,

lsoi

mdl, fl, lloi, lmoi,

lsoi

mdl, mom, mdf,

lom, ldf, fl, lloi,

lmoi, lsoi

sloi > > sloi, smoi, ssoi,

mi, >

sloi fdl, fom, mdl,

mom, mdf, fl, fm,

fs, lloi, mloi, sloi

mdf mdf, lom, ldf

smoi > > ssoi, mi, > smoi fdl, fom, mdl, fl,

fm, fs, lloi, mloi,

sloi

mom mdf, lom, ldf

ssoi > > ssoi, mi, > ssoi fdl, fom, mdl, fl,

fm, fs, lloi, lmoi,

lsoi, mloi, mmoi,

msoi, sloi, smoi,

ssoi

mdl, fl, lloi, lmoi,

lsoi

mdl, mom, mdf,

lom, ldf, fl, lloi,

lmoi, lsoi
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Table A.5: ssi to ss – (continued).

ssi smi sli = sl sm ss

mi > > > mi fdl, fs, sloi, smoi,

ssoi

fom, fm, mloi,

mmoi, msoi

mdl, mom, mdf,

lom, ldf, fl, lloi,

lmoi, lsoi

> > > > > fdl, fs, sloi, smoi,

ssoi, mi, >

fdl, fs, sloi, smoi,

ssoi, mi, >

fdl, fom, mdl,

mom, mdf, lom,

ldf, fl, fm, fs, lloi,

lmoi, lsoi, mloi,

mmoi, msoi, sloi,

smoi, ssoi, mi, >
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A.3.4 FirstDuringLast (fdl) to FinishesSmall (fs)

Table A.6: FirstDuringLast (fdl) to FinishesSmall (fs).

fdl fom mdl mom mdf lom ldf fl fm fs

< <, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo, sl,

sm, ss, fdl,

fom, mdl,

mom, mdf,

lom, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

smo, slo,

mso, mmo,

mlo, lso,

lmo, llo, sl,

sm, ss, fdl,

fom, mdl,

mom, mdf,

lom, ldf

m slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

smo, mmo,

lmo, sm,

lom

sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

smo, mmo,

lmo, sm,

lom

slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

sso slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

slo, mlo,

llo, sl, mdf

sso, smo,

slo, mso,

mmo, mlo,

lso, lmo,

llo, sl, sm,

ss, mdf,

lom, ldf

sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

sso, smo,

slo, mso,

mmo, mlo,

lso, lmo,

llo, sl, sm,

ss, mdf,

lom, ldf

slo, mlo,

llo, sl, mdf

slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf
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Table A.6: fdl to fs – (continued).

fdl fom mdl mom mdf lom ldf fl fm fs

smo slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

slo, mlo,

llo, sl, mdf

slo, mlo,

llo, sl, mdf

smo, mmo,

lmo, sm,

lom

sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

slo, mlo,

llo, sl, mdf

slo, mlo,

llo, sl, mdf

slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

slo slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

slo, mlo,

llo, sl, mdf

slo, mlo,

llo, sl, mdf

slo, mlo,

llo, sl, mdf

sso, smo,

slo, mso,

mmo, mlo,

lso, lmo,

llo, sl, sm,

ss, mdf,

lom, ldf

sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

slo, mlo,

llo, sl, mdf

slo, mlo,

llo, sl, mdf

slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

mso fdl, fom,

mdl

mom lso, lmo,

llo, sl, sm,

ss, mdf,

lom, ldf

lso, ss, ldf lso, ss, ldf lso, ss, ldf lso, ss, ldf lso, lmo,

llo, sl, sm,

ss, mdf,

lom, ldf

mom fdl, fom,

mdl

mmo fdl, fom,

mdl

mom llo, sl, mdf lmo, sm,

lom

lso, ss, ldf lso, ss, ldf lso, ss, ldf llo, sl, mdf mom fdl, fom,

mdl

mlo fdl, fom,

mdl

mom llo, sl, mdf llo, sl, mdf lso, lmo,

llo, sl, sm,

ss, mdf,

lom, ldf

lso, ss, ldf lso, ss, ldf llo, sl, mdf mom fdl, fom,

mdl
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Table A.6: fdl to fs – (continued).

fdl fom mdl mom mdf lom ldf fl fm fs

lso fdl, fom,

mdl

mdl lso, lmo,

llo, sl, sm,

ss, mdl,

mom, mdf,

lom, ldf

lso, ss, ldf lso, ss, ldf lso, ss, ldf lso, ss, ldf lso, lmo,

llo, sl, sm,

ss, mdl,

mom, mdf,

lom, ldf

mdl fdl, fom,

mdl

lmo fdl, fom,

mdl

mdl llo, sl, mdl,

mom, mdf

lmo, sm,

lom

lso, ss, ldf lso, ss, ldf lso, ss, ldf llo, sl, mdl,

mom, mdf

mdl fdl, fom,

mdl

llo fdl, fom,

mdl

mdl llo, sl, mdl,

mom, mdf

llo, sl, mdf lso, lmo,

llo, sl, sm,

ss, mdf,

lom, ldf

lso, ss, ldf lso, ss, ldf llo, sl, mdl,

mom, mdf

mdl fdl, fom,

mdl

fsi slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

slo, mlo,

llo, sl, mdf

slo, mlo,

llo, sl, mdf

slo, mlo,

llo, sl, mdf

slo, mlo,

llo, sl, mdf

smo, mmo,

lmo, sm,

lom

sso, mso,

lso, ss, ldf

fsi, fmi, fli fsi, fmi, fli fsi, fmi, fli,

=, fl, fm, fs

fmi fdl, fom,

mdl

mom llo, sl, mdf llo, sl, mdf llo, sl, mdf lmo, sm,

lom

lso, ss, ldf fli = fl, fm, fs

fli fdl, fom,

mdl

mdl llo, sl, mdl,

mom, mdf

llo, sl, mdf llo, sl, mdf lmo, sm,

lom

lso, ss, ldf fli, =, fl fl fl, fm, fs
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Table A.6: fdl to fs – (continued).

fdl fom mdl mom mdf lom ldf fl fm fs

ldfi ldfi, lomi,

mdfi, ssi,

smi, sli, fdl,

fom, mdl,

fl, fm, fs,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

mdl, fl, lloi,

lmoi, lsoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

mdl, fl, lloi,

lmoi, lsoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

mdl, fl, lloi,

lmoi, lsoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

mdl, fl, lloi,

lmoi, lsoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

mdl, fl, lloi,

lmoi, lsoi

lso, lmo,

llo, fli, ldfi,

lomi, mdfi,

momi,

mdli, ssi,

smi, sli, =,

sl, sm, ss,

mdl, mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

ldfi, ssi, lsoi ldfi, ssi, lsoi ldfi, ssi,

lsoi, msoi,

ssoi

lomi mdfi, sli,

fdl, fom,

mdl, fl, fm,

fs, lloi,

mloi, sloi

mdfi, sli,

mdl, fl, lloi

mdfi, sli,

mdl, fl, lloi

mdfi, sli,

mdl, fl, lloi

mdfi, sli,

mdl, fl, lloi

momi, =,

mom

lso, lmo,

llo, fli,

mdli, sl,

sm, ss,

mdf, lom,

ldf

lomi, smi,

lmoi

lomi, smi,

lmoi

lomi, smi,

lmoi,

mmoi, smoi
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Table A.6: fdl to fs – (continued).

fdl fom mdl mom mdf lom ldf fl fm fs

mdfi mdfi, sli,

fdl, fom,

mdl, fl, fm,

fs, lloi,

mloi, sloi

mdfi, sli,

mdl, fl, lloi

mdfi, sli,

mdl, fl, lloi

mdfi, sli,

mdl, fl, lloi

llo, fli,

mdfi,

momi,

mdli, sli,

=, sl, mdl,

mom, mdf,

fl, lloi

llo, fli,

mdli, sl,

mdf

lso, lmo,

llo, fli,

mdli, sl,

sm, ss,

mdf, lom,

ldf

mdfi, sli,

lloi

mdfi, sli,

lloi

mdfi, sli,

lloi, mloi,

sloi

momi mdfi, sli,

fdl, fom,

mdl, fl, fm,

fs, lloi,

mloi, sloi

mdfi, sli,

mdl, fl, lloi

mdfi, sli,

mdl, fl, lloi

momi, =,

mom

llo, fli,

mdli, sl,

mdf

llo, fli,

mdli, sl,

mdf

lso, lmo,

llo, fli,

mdli, sl,

sm, ss,

mdf, lom,

ldf

mdfi, sli,

lloi

mdfi, sli,

lloi

mdfi, sli,

lloi, mloi,

sloi

mdli mdfi, sli,

fdl, fom,

mdl, fl, fm,

fs, lloi,

mloi, sloi

mdfi, sli,

mdl, fl, lloi

llo, fli,

mdfi,

momi,

mdli, sli,

=, sl, mdl,

mom, mdf,

fl, lloi

llo, fli,

mdli, sl,

mdf

llo, fli,

mdli, sl,

mdf

llo, fli,

mdli, sl,

mdf

lso, lmo,

llo, fli,

mdli, sl,

sm, ss,

mdf, lom,

ldf

mdfi,

momi,

mdli, sli,

lloi

mdfi, sli,

lloi

mdfi, sli,

lloi, mloi,

sloi
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Table A.6: fdl to fs – (continued).

fdl fom mdl mom mdf lom ldf fl fm fs

fomi mdfi, sli,

fdl, fom,

mdl, fl, fm,

fs, lloi,

mloi, sloi

momi, =,

mom

llo, fli,

mdli, sl,

mdf

llo, fli,

mdli, sl,

mdf

llo, fli,

mdli, sl,

mdf

llo, fli,

mdli, sl,

mdf

lso, lmo,

llo, fli,

mdli, sl,

sm, ss,

mdf, lom,

ldf

mdli momi mdfi, sli,

lloi, mloi,

sloi

fdli slo, mlo,

llo, fsi, fmi,

fli, mdfi,

momi,

mdli, fomi,

fdli, sli, =,

sl, fdl, fom,

mdl, mom,

mdf, fl, fm,

fs, lloi,

mloi, sloi

slo, mlo,

llo, fsi, fmi,

fli, mdli,

fomi, fdli,

sl, mdf

slo, mlo,

llo, fsi, fmi,

fli, mdli,

fomi, fdli,

sl, mdf

slo, mlo,

llo, fsi, fmi,

fli, mdli,

fomi, fdli,

sl, mdf

slo, mlo,

llo, fsi, fmi,

fli, mdli,

fomi, fdli,

sl, mdf

slo, mlo,

llo, fsi, fmi,

fli, mdli,

fomi, fdli,

sl, mdf

sso, smo,

slo, mso,

mmo, mlo,

lso, lmo,

llo, fsi, fmi,

fli, mdli,

fomi, fdli,

sl, sm, ss,

mdf, lom,

ldf

mdli, fomi,

fdli

mdli, fomi,

fdli

mdfi,

momi,

mdli, fomi,

fdli, sli,

lloi, mloi,

sloi
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Table A.6: fdl to fs – (continued).

fdl fom mdl mom mdf lom ldf fl fm fs

ssi fdl, fs, sloi,

smoi, ssoi

fom, fm,

mloi,

mmoi, msoi

mdl, fl, lloi,

lmoi, lsoi

mdl, fl, lloi,

lmoi, lsoi

mdl, fl, lloi,

lmoi, lsoi

mdl, fl, lloi,

lmoi, lsoi

mdl, mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

lsoi msoi ssoi

smi fdl, fs, sloi fom, fm,

mloi

mdl, fl, lloi mdl, fl, lloi mdl, fl, lloi mom mdf, lom,

ldf

lmoi mmoi smoi

sli fdl, fs, sloi fom, fm,

mloi

mdl, fl, lloi mdl, fl, lloi mdl, mom,

mdf, fl, lloi

mdf mdf, lom,

ldf

lloi mloi sloi

= fdl fom mdl mom mdf lom ldf fl fm fs

sl fdl fom mdl, mom,

mdf

mdf mdf, lom,

ldf

ldf ldf mdl, mom,

mdf

fom fdl

sm fdl fom mdl, mom,

mdf

lom ldf ldf ldf mdl, mom,

mdf

fom fdl

ss fdl fom mdl, mom,

mdf, lom,

ldf

ldf ldf ldf ldf mdl, mom,

mdf, lom,

ldf

fom fdl

fdl fdl fdl fdl fdl fdl, fom,

mdl, mom,

mdf, lom,

ldf

ldf ldf fdl fdl fdl
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Table A.6: fdl to fs – (continued).

fdl fom mdl mom mdf lom ldf fl fm fs

fom fdl fdl fdl fom mdl, mom,

mdf, lom,

ldf

ldf ldf fdl fdl fdl

mdl fdl fdl fdl, fom,

mdl

mdl mdl, mom,

mdf, lom,

ldf

ldf ldf fdl, fom,

mdl

fdl fdl

mom fdl fdl fdl, fom,

mdl

mom mdf, lom,

ldf

ldf ldf fdl, fom,

mdl

fdl fdl

mdf fdl fdl fdl, fom,

mdl, mom,

mdf

mdf mdf, lom,

ldf

ldf ldf fdl, fom,

mdl, mom,

mdf

fdl fdl

lom fdl fdl fdl, fom,

mdl, mom,

mdf

lom ldf ldf ldf fdl, fom,

mdl, mom,

mdf

fdl fdl

ldf fdl fdl fdl, fom,

mdl, mom,

mdf, lom,

ldf

ldf ldf ldf ldf fdl, fom,

mdl, mom,

mdf, lom,

ldf

fdl fdl

fl fdl fdl fdl, fom,

mdl

mdl mdl, mom,

mdf

lom ldf fl, fm, fs fs fs

fm fdl fdl fdl fom mdl, mom,

mdf

lom ldf fs fs fs
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Table A.6: fdl to fs – (continued).

fdl fom mdl mom mdf lom ldf fl fm fs

fs fdl fdl fdl fdl fdl, fom,

mdl, mom,

mdf

lom ldf fs fs fs

lloi fdl, fs, sloi fdl, fs, sloi fdl, fom,

mdl, fl, fm,

fs, lloi,

mloi, sloi

mdl, fl, lloi mdl, mom,

mdf, fl, lloi

mdf mdf, lom,

ldf

lloi, mloi,

sloi

sloi sloi

lmoi fdl, fs, sloi fdl, fs, sloi fdl, fom,

mdl, fl, fm,

fs, lloi,

mloi, sloi

mdl, fl, lloi mdl, fl, lloi mom mdf, lom,

ldf

lmoi,

mmoi, smoi

smoi smoi

lsoi fdl, fs, sloi,

smoi, ssoi

fdl, fs, sloi,

smoi, ssoi

fdl, fom,

mdl, fl, fm,

fs, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi

mdl, fl, lloi,

lmoi, lsoi

mdl, fl, lloi,

lmoi, lsoi

mdl, fl, lloi,

lmoi, lsoi

mdl, mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

lsoi, msoi,

ssoi

ssoi ssoi
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Table A.6: fdl to fs – (continued).

fdl fom mdl mom mdf lom ldf fl fm fs

mloi fdl, fs, sloi fdl, fs, sloi fdl, fs, sloi fom, fm,

mloi

mdl, mom,

mdf, fl, lloi

mdf mdf, lom,

ldf

sloi sloi sloi

mmoi fdl, fs, sloi fdl, fs, sloi fdl, fs, sloi fom, fm,

mloi

mdl, fl, lloi mom mdf, lom,

ldf

smoi smoi smoi

msoi fdl, fs, sloi,

smoi, ssoi

fdl, fs, sloi,

smoi, ssoi

fdl, fs, sloi,

smoi, ssoi

fom, fm,

mloi,

mmoi, msoi

mdl, fl, lloi,

lmoi, lsoi

mdl, fl, lloi,

lmoi, lsoi

mdl, mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

ssoi ssoi ssoi

sloi fdl, fs, sloi fdl, fs, sloi fdl, fs, sloi fdl, fs, sloi fdl, fom,

mdl, mom,

mdf, fl, fm,

fs, lloi,

mloi, sloi

mdf mdf, lom,

ldf

sloi sloi sloi

smoi fdl, fs, sloi fdl, fs, sloi fdl, fs, sloi fdl, fs, sloi fdl, fom,

mdl, fl, fm,

fs, lloi,

mloi, sloi

mom mdf, lom,

ldf

smoi smoi smoi

ssoi fdl, fs, sloi,

smoi, ssoi

fdl, fs, sloi,

smoi, ssoi

fdl, fs, sloi,

smoi, ssoi

fdl, fs, sloi,

smoi, ssoi

fdl, fom,

mdl, fl, fm,

fs, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi

mdl, fl, lloi,

lmoi, lsoi

mdl, mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

ssoi ssoi ssoi
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Table A.6: fdl to fs – (continued).

fdl fom mdl mom mdf lom ldf fl fm fs

mi fdl, fs, sloi,

smoi, ssoi

fdl, fs, sloi,

smoi, ssoi

fdl, fs, sloi,

smoi, ssoi

fdl, fs, sloi,

smoi, ssoi

fdl, fs, sloi,

smoi, ssoi

fom, fm,

mloi,

mmoi, msoi

mdl, mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

mi mi mi

> fdl, fs, sloi,

smoi, ssoi,

mi, >

fdl, fs, sloi,

smoi, ssoi,

mi, >

fdl, fs, sloi,

smoi, ssoi,

mi, >

fdl, fs, sloi,

smoi, ssoi,

mi, >

fdl, fs, sloi,

smoi, ssoi,

mi, >

fdl, fs, sloi,

smoi, ssoi,

mi, >

fdl, fom,

mdl, mom,

mdf, lom,

ldf, fl, fm,

fs, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

> > >
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A.3.5 is-LargeLargeOverlapped-by (lloi) to After (>)

Table A.7: is-LargeLargeOverlapped-by (lloi) to After (>).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

< <, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

mso, lso,

ss, ldf

<, m, sso,

smo, slo,

mso,

mmo,

mlo, lso,

lmo, llo,

sl, sm, ss,

fdl, fom,

mdl,

mom,

mdf, lom,

ldf

<, m, sso,

smo, slo,

mso,

mmo,

mlo, lso,

lmo, llo,

sl, sm, ss,

fdl, fom,

mdl,

mom,

mdf, lom,

ldf

<, m, sso,

smo, slo,

mso,

mmo,

mlo, lso,

lmo, llo,

sl, sm, ss,

fdl, fom,

mdl,

mom,

mdf, lom,

ldf

<, m, sso,

smo, slo,

mso,

mmo,

mlo, lso,

lmo, llo,

sl, sm, ss,

fdl, fom,

mdl,

mom,

mdf, lom,

ldf

No Info
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Table A.7: lloi to > – (continued).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

m sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

sso, mso,

lso, ss, ldf

smo,

mmo,

lmo, sm,

lom

smo,

mmo,

lmo, sm,

lom

smo,

mmo,

lmo, sm,

lom

slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

fsi, fmi,

fli, =, fl,

fm, fs

ldfi, lomi,

mdfi,

momi,

mdli,

fomi, fdli,

ssi, smi,

sli, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >
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Table A.7: lloi to > – (continued).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

sso sso, smo,

slo, mso,

mmo,

mlo, lso,

lmo, llo,

sl, sm, ss,

mdf, lom,

ldf

sso, smo,

slo, mso,

mmo,

mlo, lso,

lmo, llo,

sl, sm, ss,

mdf, lom,

ldf

sso, smo,

slo, mso,

mmo,

mlo, lso,

lmo, llo,

fsi, fmi,

fli, mdli,

fomi, fdli,

sl, sm, ss,

mdf, lom,

ldf

slo, mlo,

llo, sl, mdf

slo, mlo,

llo, sl, mdf

slo, mlo,

llo, fsi,

fmi, fli,

mdli,

fomi, fdli,

sl, mdf

slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

slo, mlo,

llo, fsi,

fmi, fli,

mdfi,

momi,

mdli,

fomi, fdli,

sli, =, sl,

fdl, fom,

mdl,

mom,

mdf, fl,

fm, fs, lloi,

mloi, sloi

mdfi,

momi,

mdli,

fomi, fdli,

sli, lloi,

mloi, sloi

ldfi, lomi,

mdfi,

momi,

mdli,

fomi, fdli,

ssi, smi,

sli, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

smo slo, mlo,

llo, sl, mdf

fsi, fmi, fli mdli,

fomi, fdli

slo, mlo,

llo, sl, mdf

fsi, fmi, fli mdli,

fomi, fdli

slo, mlo,

llo, sl, fdl,

fom, mdl,

mom, mdf

fsi, fmi,

fli, =, fl,

fm, fs

mdfi,

momi,

mdli,

fomi, fdli,

sli, lloi,

mloi, sloi

mdfi,

momi,

mdli,

fomi, fdli,

sli, lloi,

mloi, sloi

ldfi, lomi,

mdfi,

momi,

mdli,

fomi, fdli,

ssi, smi,

sli, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >
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Table A.7: lloi to > – (continued).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

slo slo, mlo,

llo, fsi,

fmi, fli,

mdli,

fomi, fdli,

sl, mdf

mdli,

fomi, fdli

mdli,

fomi, fdli

slo, mlo,

llo, fsi,

fmi, fli,

mdli,

fomi, fdli,

sl, mdf

mdli,

fomi, fdli

mdli,

fomi, fdli

slo, mlo,

llo, fsi,

fmi, fli,

mdfi,

momi,

mdli,

fomi, fdli,

sli, =, sl,

fdl, fom,

mdl,

mom,

mdf, fl,

fm, fs, lloi,

mloi, sloi

mdfi,

momi,

mdli,

fomi, fdli,

sli, lloi,

mloi, sloi

mdfi,

momi,

mdli,

fomi, fdli,

sli, lloi,

mloi, sloi

mdfi,

momi,

mdli,

fomi, fdli,

sli, lloi,

mloi, sloi

ldfi, lomi,

mdfi,

momi,

mdli,

fomi, fdli,

ssi, smi,

sli, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >
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Table A.7: lloi to > – (continued).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

mso lso, lmo,

llo, sl, sm,

ss, mdf,

lom, ldf

lso, lmo,

llo, sl, sm,

ss, mdf,

lom, ldf

lso, lmo,

llo, fli,

mdli, sl,

sm, ss,

mdf, lom,

ldf

mom mom momi, =,

mom

fdl, fom,

mdl

fdl, fom,

mdl

mdfi, sli,

fdl, fom,

mdl, fl,

fm, fs, lloi,

mloi, sloi

lomi, smi,

lmoi,

mmoi,

smoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi,

>

mmo llo, sl, mdf fli mdli mom = momi fdl, fom,

mdl

fl, fm, fs mdfi, sli,

lloi, mloi,

sloi

lomi, smi,

lmoi,

mmoi,

smoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi,

>

mlo llo, fli,

mdli, sl,

mdf

mdli mdli momi, =,

mom

momi momi mdfi, sli,

fdl, fom,

mdl, fl,

fm, fs, lloi,

mloi, sloi

mdfi, sli,

lloi, mloi,

sloi

mdfi, sli,

lloi, mloi,

sloi

lomi, smi,

lmoi,

mmoi,

smoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi,

>
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Table A.7: lloi to > – (continued).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

lso lso, lmo,

llo, sl, sm,

ss, mdl,

mom,

mdf, lom,

ldf

lso, lmo,

llo, sl, sm,

ss, mdl,

mom,

mdf, lom,

ldf

lso, lmo,

llo, fli,

ldfi, lomi,

mdfi,

momi,

mdli, ssi,

smi, sli,

=, sl, sm,

ss, mdl,

mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

mdl mdl ldfi, lomi,

mdfi, ssi,

smi, sli,

mdl, fl,

lloi, lmoi,

lsoi

fdl, fom,

mdl

fdl, fom,

mdl

ldfi, lomi,

mdfi, ssi,

smi, sli,

fdl, fom,

mdl, fl,

fm, fs,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi,

>

lmo llo, sl,

mdl,

mom, mdf

fli, =, fl ldfi, lomi,

mdfi,

momi,

mdli, ssi,

smi, sli,

lloi, lmoi,

lsoi

mdl fl ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi

fdl, fom,

mdl

fl, fm, fs ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi,

>
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Table A.7: lloi to > – (continued).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

llo llo, fli,

mdfi,

momi,

mdli, sli,

=, sl, mdl,

mom,

mdf, fl,

lloi

mdfi,

momi,

mdli, sli,

lloi

ldfi, lomi,

mdfi,

momi,

mdli, ssi,

smi, sli,

lloi, lmoi,

lsoi

mdfi, sli,

mdl, fl,

lloi

mdfi, sli,

lloi

ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi

mdfi, sli,

fdl, fom,

mdl, fl,

fm, fs, lloi,

mloi, sloi

mdfi, sli,

lloi, mloi,

sloi

ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi,

>

fsi mdli,

fomi, fdli

mdli,

fomi, fdli

mdli,

fomi, fdli

mdli,

fomi, fdli

mdli,

fomi, fdli

mdli,

fomi, fdli

mdfi,

momi,

mdli,

fomi, fdli,

sli, lloi,

mloi, sloi

mdfi,

momi,

mdli,

fomi, fdli,

sli, lloi,

mloi, sloi

mdfi,

momi,

mdli,

fomi, fdli,

sli, lloi,

mloi, sloi

mdfi,

momi,

mdli,

fomi, fdli,

sli, lloi,

mloi, sloi

ldfi, lomi,

mdfi,

momi,

mdli,

fomi, fdli,

ssi, smi,

sli, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >
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Table A.7: lloi to > – (continued).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

fmi mdli mdli mdli momi momi momi mdfi, sli,

lloi, mloi,

sloi

mdfi, sli,

lloi, mloi,

sloi

mdfi, sli,

lloi, mloi,

sloi

lomi, smi,

lmoi,

mmoi,

smoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi,

>

fli mdfi,

momi,

mdli, sli,

lloi

mdfi,

momi,

mdli, sli,

lloi

ldfi, lomi,

mdfi,

momi,

mdli, ssi,

smi, sli,

lloi, lmoi,

lsoi

mdfi, sli,

lloi

mdfi, sli,

lloi

ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi

mdfi, sli,

lloi, mloi,

sloi

mdfi, sli,

lloi, mloi,

sloi

ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi,

>

ldfi ldfi, ssi,

lsoi

ldfi, ssi,

lsoi

ldfi, ssi,

lsoi

ldfi, ssi,

lsoi

ldfi, ssi,

lsoi

ldfi, ssi,

lsoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi,

>

lomi ldfi, ssi,

lsoi

ldfi, ssi,

lsoi

ldfi, ssi,

lsoi

ldfi, ssi,

lsoi

ldfi, ssi,

lsoi

ldfi, ssi,

lsoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi,

>
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Table A.7: lloi to > – (continued).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

mdfi ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi

ldfi, ssi,

lsoi

ldfi, ssi,

lsoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi

ldfi, ssi,

lsoi

ldfi, ssi,

lsoi

ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi,

>

momi mdfi, sli,

lloi

lomi, smi,

lmoi

ldfi, ssi,

lsoi

mdfi, sli,

lloi

lomi, smi,

lmoi

ldfi, ssi,

lsoi

mdfi, sli,

lloi, mloi,

sloi

lomi, smi,

lmoi,

mmoi,

smoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi,

>

mdli mdfi,

momi,

mdli, sli,

lloi

mdfi,

momi,

mdli, sli,

lloi

ldfi, lomi,

mdfi,

momi,

mdli, ssi,

smi, sli,

lloi, lmoi,

lsoi

mdfi, sli,

lloi

mdfi, sli,

lloi

ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi

mdfi, sli,

lloi, mloi,

sloi

mdfi, sli,

lloi, mloi,

sloi

ldfi, lomi,

mdfi, ssi,

smi, sli,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

ldfi, ssi,

lsoi, msoi,

ssoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi,

>
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Table A.7: lloi to > – (continued).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

fomi mdli mdli mdli momi momi momi mdfi, sli,

lloi, mloi,

sloi

mdfi, sli,

lloi, mloi,

sloi

mdfi, sli,

lloi, mloi,

sloi

lomi, smi,

lmoi,

mmoi,

smoi

ldfi, ssi,

lsoi, msoi,

ssoi, mi,

>

fdli mdli,

fomi, fdli

mdli,

fomi, fdli

mdli,

fomi, fdli

mdli,

fomi, fdli

mdli,

fomi, fdli

mdli,

fomi, fdli

mdfi,

momi,

mdli,

fomi, fdli,

sli, lloi,

mloi, sloi

mdfi,

momi,

mdli,

fomi, fdli,

sli, lloi,

mloi, sloi

mdfi,

momi,

mdli,

fomi, fdli,

sli, lloi,

mloi, sloi

mdfi,

momi,

mdli,

fomi, fdli,

sli, lloi,

mloi, sloi

ldfi, lomi,

mdfi,

momi,

mdli,

fomi, fdli,

ssi, smi,

sli, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >
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Table A.7: lloi to > – (continued).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

ssi lsoi lsoi lsoi msoi msoi msoi ssoi ssoi ssoi mi >

smi lsoi lsoi lsoi msoi msoi msoi ssoi ssoi ssoi mi >

sli lloi, lmoi,

lsoi

lsoi lsoi mloi,

mmoi,

msoi

msoi msoi sloi, smoi,

ssoi

ssoi ssoi mi >

= lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

sl mdl,

mom,

mdf, fl,

lloi

lloi lloi, lmoi,

lsoi

fom, fm,

mloi

mloi mloi,

mmoi,

msoi

fdl, fs, sloi sloi sloi, smoi,

ssoi

mi >

sm mdl,

mom, mdf

fl lloi, lmoi,

lsoi

fom fm mloi,

mmoi,

msoi

fdl fs sloi, smoi,

ssoi

mi >

ss mdl,

mom,

mdf, lom,

ldf

mdl,

mom,

mdf, lom,

ldf

mdl,

mom,

mdf, lom,

ldf, fl, lloi,

lmoi, lsoi

fom fom fom, fm,

mloi,

mmoi,

msoi

fdl fdl fdl, fs,

sloi, smoi,

ssoi

mi >
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Table A.7: lloi to > – (continued).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

fdl fdl, fs,

sloi, smoi,

ssoi, mi,

>

> > fdl, fs,

sloi, smoi,

ssoi, mi,

>

> > fdl, fs,

sloi, smoi,

ssoi, mi,

>

> > > >

fom fdl, fs,

sloi, smoi,

ssoi

mi > fdl, fs,

sloi, smoi,

ssoi

mi > fdl, fs,

sloi, smoi,

ssoi

mi > > >

mdl fdl, fom,

mdl, fl,

fm, fs,

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

lsoi, msoi,

ssoi

lsoi, msoi,

ssoi, mi,

>

fdl, fs,

sloi, smoi,

ssoi

ssoi ssoi, mi,

>

fdl, fs,

sloi, smoi,

ssoi

ssoi ssoi, mi,

>

> >

mom fdl, fom,

mdl, fl,

fm, fs, lloi,

mloi, sloi

lmoi,

mmoi,

smoi

lsoi, msoi,

ssoi, mi,

>

fdl, fs, sloi smoi ssoi, mi,

>

fdl, fs, sloi smoi ssoi, mi,

>

> >
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Table A.7: lloi to > – (continued).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

mdf fdl, fom,

mdl,

mom,

mdf, fl,

fm, fs, lloi,

mloi, sloi

lloi, mloi,

sloi

lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

fdl, fs, sloi sloi sloi, smoi,

ssoi, mi,

>

fdl, fs, sloi sloi sloi, smoi,

ssoi, mi,

>

> >

lom fdl, fom,

mdl,

mom, mdf

fl, fm, fs lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

fdl fs sloi, smoi,

ssoi, mi,

>

fdl fs sloi, smoi,

ssoi, mi,

>

> >

ldf fdl, fom,

mdl,

mom,

mdf, lom,

ldf

fdl, fom,

mdl,

mom,

mdf, lom,

ldf

fdl, fom,

mdl,

mom,

mdf, lom,

ldf, fl, fm,

fs, lloi,

lmoi, lsoi,

mloi,

mmoi,

msoi, sloi,

smoi, ssoi,

mi, >

fdl fdl fdl, fs,

sloi, smoi,

ssoi, mi,

>

fdl fdl fdl, fs,

sloi, smoi,

ssoi, mi,

>

> >
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Table A.7: lloi to > – (continued).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

fl lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

lsoi, msoi,

ssoi

lsoi, msoi,

ssoi, mi,

>

sloi, smoi,

ssoi

ssoi ssoi, mi,

>

sloi, smoi,

ssoi

ssoi ssoi, mi,

>

> >

fm sloi, smoi,

ssoi

mi > sloi, smoi,

ssoi

mi > sloi, smoi,

ssoi

mi > > >

fs sloi, smoi,

ssoi, mi,

>

> > sloi, smoi,

ssoi, mi,

>

> > sloi, smoi,

ssoi, mi,

>

> > > >

lloi lloi, lmoi,

lsoi, mloi,

mmoi,

msoi, sloi,

smoi, ssoi

lsoi, msoi,

ssoi

lsoi, msoi,

ssoi, mi,

>

sloi, smoi,

ssoi

ssoi ssoi, mi,

>

sloi, smoi,

ssoi

ssoi ssoi, mi,

>

> >

lmoi lsoi, msoi,

ssoi

lsoi, msoi,

ssoi

lsoi, msoi,

ssoi, mi,

>

ssoi ssoi ssoi, mi,

>

ssoi ssoi ssoi, mi,

>

> >

lsoi lsoi, msoi,

ssoi

lsoi, msoi,

ssoi

lsoi, msoi,

ssoi, mi,

>

ssoi ssoi ssoi, mi,

>

ssoi ssoi ssoi, mi,

>

> >
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Table A.7: lloi to > – (continued).

lloi lmoi lsoi mloi mmoi msoi sloi smoi ssoi mi >

mloi sloi, smoi,

ssoi

mi > sloi, smoi,

ssoi

mi > sloi, smoi,

ssoi

mi > > >

mmoi ssoi mi > ssoi mi > ssoi mi > > >

msoi ssoi mi > ssoi mi > ssoi mi > > >

sloi sloi, smoi,

ssoi, mi,

>

> > sloi, smoi,

ssoi, mi,

>

> > sloi, smoi,

ssoi, mi,

>

> > > >

smoi ssoi, mi,

>

> > ssoi, mi,

>

> > ssoi, mi,

>

> > > >

ssoi ssoi, mi,

>

> > ssoi, mi,

>

> > ssoi, mi,

>

> > > >

mi > > > > > > > > > > >

> > > > > > > > > > > >
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A.3.6 Symmetric Verification Table

fi=f o,
oi = <mo,

>mioi fi odifi,
oidf

<modifi,
>mioidf

oddisfi,
oididsif No Info

<,
>

si,
s

<mods,
>mioidisi

ods,
oidisi

m,
mi di=f di,

d
=ooiddi

ssiffi s=si

Figure A.1: The 49× 49 VLMI transitivity table1using the same colour for each
inverse relationship to highlight the symmetry.

1The relationship order of the rows and columns is as follows: 〈 <, m,
[sso,smo,slo,mso,mmo,mlo,lso,lmo,llo], [fsi,fmi,fli], [ldfi,lomi,mdfi,momi,mdli,fomi,fdli], [ssi,smi,sli], =, [sl,sm,ss],
[fdl,fom,mdl,mom,mdf,lom,ldf], [fl,fm,fs], [lloi,lmoi,lsoi,mloi,mmoi,msoi,sloi,smoi,ssoi], mi, >〉



Appendix B

Software Application

This appendix presents the INTeracting Episode Miner with Timing Marks (INTEMTM )
application that has been developed to facilitate algorithm use. The application is avail-
able for use and can be accessed at –

http://www.infoeng.flinders.edu.au/research/techreps/SIE05004.zip (Mooney,
2005).

Currently the application comprises two distinct modules:

Sequence Mining – this module encompasses both episode and interaction mining,
refer to Chapter 5 for a detailed explanation and Section C.1 for algorithms.

Transitive Relationship Discovery – the module allows for variable input and out-
put (Allen, Freksa, Midpoint or Mixed selections) for discernment of any transitive
relationships, refer to Chapter 7 for a discussion.

A combination of both modules is available as an integrated implementation and
the Transitive Relationship Discovery module is also available as a standalone
JavaTM Applet. The descriptions and screenshots that follow are from the integrated
implementation.

185
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B.1 Sequence Mining

This module deals with the Sequence Mining aspect of algorithmic development. It
encompasses both the episodic mining – with and without timing marks – and the
interaction discovery process.

B.1.1 Sequence Mining Interface

The sequence mining interface has been developed to facilitate algorithm use, and to
view the results in a way that enables the user to more easily select those episodes and
interactions that are of most interest. Furthermore a common problem identified with
data mining routines is that the number of results produced can be large and difficult
to interpret and hence methods for constraining the output have been implemented. In
accordance with this position the user interface for INTEMTM enables the user to set
all currently implemented constraints for both discovery of episodes and interactions.

The results of the mining run (frequent episodes) and the discovered interactions
are then able to be viewed in both text format and as a directed graph. The directed
graph not only allows the user to view the entire episode, but also shows the points at
which interactions take place. This feature is most useful when the same sub-episode
occurs at different points within the discovered frequent episode.

The interface of the INTEMTM application is comprised of four main areas (refer
to Figure B.1):

1. The left panel (Viewing Pane), contains a tab pane that enables the user to switch
between viewing the results in a text format or as a directed graph (see Sec-
tion B.1.2).

2. The centre panel (Tree Pane) houses two tree structures the purpose of which are
to enable selection of either a frequent episode or an interaction. The Viewing Pane
will then display whichever selection that has been made (see Section B.1.2).

3. The right panel (Control Pane) has two main tabs (i.) Sequence Mining that has
a further three options – New Data, Interactions and Processed Data, and (ii.)
Transitive Relationships. These are discussed in Section B.1.3 and Section B.2.1
respectively.

4. The bottom panel (Execution Pane) contains an area for displaying program execu-
tion information and for toggling the support values displayed on the Viewing Pane
(see Section B.1.4).



APPENDIX B. SOFTWARE APPLICATION 187

Graphic Output Legend

Node Description
-

Root (green) Node for the interaction (E)
-

Enclosing (blue) sub-episode (G, L, I, H)
-

Enclosed (orange) sub-episode (C, A, T, O)
-

Shared (purple) node of both enclosing and enclosed sub-episodes (N, S)

Edge

2091
Relationship (blue gradient) between two Nodes and the count. Direction is

indicated by the shape of the wedge (possibly two-way (E ↔ S)).

The point(s) (gray gradient) at which the enclosed sub-episode begins/ends

within the enclosing sub-episode

Figure B.1: Screenshot of the INTEMTM application. The strong interaction
CANTONESE during ENGLISH – discovered in the DAT16-1200 file – is dis-
played.

B.1.2 Viewing the Output

Visualisation of data mining routines is not uncommon, but compared to the abundance
of visualisations available for Association mining (Rogowitz and Treinish, 1993; Hof-
man, Siebes and Wilhelm, 2000; Rainsford and Roddick, 2000; Ong, Ong, Ng and Lim,
2002), (see also (Ceglar, Roddick, Mooney and Calder, 2003) for a survey of techniques
across all areas), the area of sequence mining has very few, and those that are available
are mainly in the areas of text mining (Wong, Cowley, Foote, Jurrus and Thomas,
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2000), web mining (Cadez, Heckerman, Meek, Smyth and White, 2000; Demiriz and
Zaki, 2002), or DNA (Hoffman, Grinstein, Marx, Grosse and Stanley, 1997).

The aim of the INTEMTM application is therefore to introduce a method whereby
the results of sequence mining may be effectively displayed in an intuitive manner.
As such the visualisation panes offer several alternative representations of the results
from sequence mining runs. This includes not only the discovered frequent closed
episodes but also any strong or weak interactions that those frequent closed episodes
may contain. Figure B.2 shows the directed graph, text output and the trees from
which selections for viewing can be made.

Figure B.2: Screenshot of the INTEMTM application showing the various com-
ponents of the Viewing Pane and Tree Pane.

The upper tree contains the Closed Frequent Episodes organised by length and the
lower tree the interactions. The lower tree containing the interactions is divided into
two sections for each of strong and weak interactions and these are further divided into
the temporal relationships from which they are comprised.

The directed graph has colour coded nodes (see Figure B.1 for the legend) and each
node is able to be moved, using the mouse, so that a particular users needs can be
accommodated. The support values can also be toggled on or off as required.
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The text output tab of the Viewing Pane contains identical information to the tree
structures and is included for those who may require a paper based copy of the results.

B.1.3 Controls for Mining

Figure B.3: Screenshot of the INTEMTM application showing the available
options on the Sequence Mining tab of the Control Pane.

This section contains a description of the Control Panel Tabs that belong to the
Sequence Mining task (refer to Figure B.3 for screenshots of the actual configuration):

i New Data Tab – Settings on this tab relate to new mining tasks.

� Input File – A data source selected from a specific location on the file
system.

� Support and Lookahead

� Support – This is used in conjunction with the maximum number of win-
dows (max win) to determine the minimum episode frequency (min freq).

� Look Ahead (Window) lookahead – This is the maximum length episode
to be mined.
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� Timing Marks

� Has Timing Marks – Indicates whether the data to be mined has timing
marks. If not then the following four items are not available.

� Timing Mark Token – This list contains those unique tokens that are
present in the data file. The list is compiled during the initial pass of
the data when determining the single token episodes.

� Number of Tokens – This number determines how many timing tokens
can be present in any given episode (see Section 6.1, page 100 for a
complete description).

� Inclusiveness – A selection can be made whether to mine using exactly
the number of timing marks, or up to and including that number.

� Reportable – Indicates whether to include the timing marks in the out-
put.

� Find Episodes – Perform the task of mining for frequent episodes using
the selected constraints.

i Interactions Tab – Settings on this tab relate to interaction discovery.

� Interaction Discovery

� Interaction Type – Select the type of interactions to be discovered.
Available selections are Allen or Midpoint.

� Interaction support (min interaction supp) – This value is used in con-
junction with the interaction count (min interaction count) to deter-
mine reportability (see Definition 5.14, page 86).

� Find Interactions – Perform the task of interaction discovery using the
selected constraints.

� Constrain Interactions

� Minimum Sub-episode length (min interaction length) – The value se-
lected here will constrain the output to interactions where both sub-
episodes are of a length greater than or equal to the selected value.
Only values up to and including the maximum length sub-episode are
available for selection.

� Constrain Interactions – Perform the operation of constraining the sub-
episode length using the selected value.

� Interaction Ideograph – This graphic depicts the currently selected in-
teraction.

i Processed Data Tab – Settings on this tab relate to data files that have been
saved from previous mining runs. The flexibility offered by this option enables
the visualisation to be decoupled from algorithms that produce the episodes and
interactions, therefore output files generated from different mining algorithms
may be used as long as they conform to the required input file specifications.
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� Output File – An output data file (*.out) that is selected for read only
viewing.

� Interaction File Type – Indicates the type of output file that has been
selected. The type will be determined by the settings that were in effect,
either Allen or Midpoint interactions, when the file was saved.

� Interaction Tree – Generate the episode and interaction trees as well as
the graphical and text outputs associated with the selected data file.

B.1.4 Execution Information

The Execution Pane (see Figure B.4) contains information relevant to the running of the
algorithms for both episode discovery and interaction discovery. The output comprises
information on the times for each process involved in both of these activities. The area
also contains the mechanism for toggling the support values on the Viewing Pane.

Figure B.4: Screenshot of the INTEMTM application showing execution infor-
mation for a mining run and interaction discovery.
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B.2 Transitive Relationship Discovery

This module was developed to facilitate the use of the developed Variable-Length Mid-
point Intervals (VLMI) (Chapter 4), and those of Allen (1983) and Freksa (1992), and
the resultant transitivity tables (see Figure B.5). This tool is available as a both a
standalone JavaTM Applet and as a an integrated part of the INTEMTM application.

B.2.1 Transitive Relationships Interface

Figure B.5: Screenshot of the transitive relationships interface showing the results
when relationships from each of the available types of input are selected - Allen:
during (d), Freksa: survived by contemporary of (bc), and Midpoint: LargeMedi-
umOverlap (lmo).

The interface comprises three main areas (refer Figure B.5):

i The upper left panel graphical output display for the results.

i The lower left panel (not available in the stand-alone version) for the display of
any transitive relationships that may have been discovered from the results of a
sequence mining run.
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Figure B.6: Screenshots of the transitive relationships interface showing all of the
available output display types: top-left – Allen, top-centre – Freksa and bottom-
centre – Midpoint. The Control Pane is shown on the right and the complete
interface on the bottom-left.
All of the displays depict use of the multiple selection, with a value of three. This
yields the configuration, for the screenshot: A llo−→ B

mdfi−→ C
mdf−→ D, which results

in A
llo,fli,mdfi,momi,mdli−→ D.

i The right panel (Control Pane) contains the controls for the selection of:

� Type of relations – a selection can be made from Allen, Freksa, Midpoint,
or Mixed. The Mixed selection enables the relationships from all types to be
used.

� Data Structure – how the configuration of the episodes is structured:

� Union – This allows two paths to be explored. For example A→ B → D

and A → C → D, which will yield the transitive relationship A → D

resultant from the Union of the two paths.

� Multiple – This is a ‘chaining’ of potentially related episodes. For ex-
ample A → B → C → D, which will yield the transitive relationship
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A→ D – the intersection of each resultant set.

� Relations – each available list will contain those relationships that coincided
with the selected type. The number of selections will depend on the chosen
Data Structure.

� Display Type – a selection can be made from Allen-style relationships,
Freksa’s conceptual neighbourhoods or more fine grained VLMI relationships.
The available selections for output are dependent on which types of relations
have been selected during the input and if two, or three, different types have
been selected (one for each set of relations) the output options will defer to
the more general in the following order: Midpoint → Allen → Freksa. For
example if the relationships have been expressed using the Midpoint algebra
then all possible outputs are available, if Allen relationships have been used
then Allen and Freksa outputs are available, and so on. Figure B.6 shows
all possible outputs from a given midpoint selection.

� Discovery

� Find Transitives – Perform the task of discovering the transitive rela-
tionships using the selected constraints.

B.3 Experimental Results

This section outlines the experiments that have been run using the INTEMTM software
with and without timing marks. All of the algorithms were implemented in the JavaTM

programming language and all experiments were conducted on a 2.6GHz AMD machine
running MicrosoftrWindowsrXP with 1Gb of RAM.

B.3.1 Mining without Timing Marks

This section outlines the experiments that have been run without timing marks under
different support levels and a lookahead value of 60. Three of the four input files were
synthetically produced ASCII text files ranging in size from 200Kb to 1.2Mb, the fourth
was taken from the first 25,000 rows of the Human Genome. The set of tokens for the
synthetic files was taken from the upper-case alphabetic characters, T = 〈A . . . Z,#, /〉,
while the genome file had the five characters T = 〈A,C,G, T,N〉. Table B.1 summarises
the nature of the files used.

The smallest file (DAT7-200) was used for algorithmic development, since the com-
position, and therefore the expected results, was known. The remaining synthetic files
and the Genome file (GEN-1200) were mined after algorithm completion. In common
with many sequence mining applications and because of the differences between the disk
and bus speeds of various platforms, the test algorithms were developed to be memory
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Table B.1: Non-timing mark experimental file specifications.

File Name Size of Alphabet Number of Tokens

DAT7-200 28 199,384
DAT15-650 28 650,918
DAT16-1200 28 1,151,360
GEN-1200 5 1,178,371

resident and thus the time provided can be more readily compared. An added time
factor for reading the files should be included to obtain the total time1. Figure B.7(a)
shows the actual processing times, excluding any I/O, for the mining of the episodes
and the interactions concurrently. The times displayed in Figure B.7(a) are for the
generation of the frequent episodes shown in Figure B.7(b).

The larger token set for the synthetic data files produced fewer frequent episodes, by
a factor of 8 against the genome data (Figure B.7(b)), and as such the support metric
that was used for reporting the frequent interactions (see §Section 5.3.2 for details) was
more appropriate. Thus, in order to assess the algorithms using the genome data a
support level was chosen where an excessive number of frequent episodes was not going
to be a major contributing factor.

(a) Processing time as a function of support.
GEN-1200 uses the primary y-axis (left) for
its values.

(b) Number of frequent episodes as a function
of support.
GEN-1200 uses the primary y-axis (left) for
its values.

Figure B.7: Processing time and frequent episode production using a lookahead
distance of 60 and varying levels of support.

Since the interactions are able to be mined independently of, as well as concur-
rently with, episode production actual processing times are able to be reported for the
algorithms that have been developed. The times displayed in Figure B.8(a) are for the

1In the conducted experiments, for the Genome Data, this was approximately 4 seconds and pro-
portionally quicker with the other datasets. Note that since the algorithms run in-memory, reading
the input file only has to occur on the first run, after which different lookahead distances and support
levels can be supplied without incurring this initial overhead.
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(a) Processing time as a function of support. (b) Number of frequent interactions as a
function of support.

Figure B.8: Execution time and frequent interaction production using frequent
episodes mined at a support of 0.0005 with varying levels of interaction support.

generation of the frequent interactions shown in Figure B.8(b). All of the tests were
run using a minimum sub-episode length of one, which can be viewed as the worst case
scenario (most frequent interactions produced), and although the results of constrain-
ing the minimum sub-episode length are not shown here, it is apparent that this would
reduce both the processing time and the number of frequent interactions produced.

B.3.2 Mining with Timing Marks

This section outlines the experiments that have been run with timing marks. All tests
were conducted using a very small support level (0.005), a lookahead value of 20 and,
when including timing marks, a timing mark count (tmc) of 2 with the reporting option
set to exclude the marks from the output.

All of the test files comprised the alphabet T = 〈A . . . Z,#, /〉 and all had the added
token 〈.〉 to enable the testing of the timing mark constraint. Table B.2 summarises
the nature of the files used.

Table B.2: Timing mark experimental file specifications.

File Name Size of Alphabet Number of Tokens

DAT200 29 199,384
DAT330 29 330,522
DAT650 29 650,918
DAT1200 29 1,151,360

The results show that there is no overhead incurred when using the timing mark
option, (see Figure B.9(a)). Indeed, since the constraint is implemented deeper in the
process there is a slight speed increase when looking for sequences containing timing
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marks. The reason for the speed up can also seen, (see Figure B.9(b)), by the fact
there are fewer sequences discovered with the timing mark option selected and in the
majority of cases the maximum length of the discovered sequences is smaller.

(a) Execution times with and without timing
marks for the test files.

(b) Number of frequent sequences and
maximum length sequences with and
without timing marks.

Figure B.9: Processing time and frequent episode production with and without
timing marks.



Appendix C

Algorithms

The purpose of this appendix is to serve as a repository for the algorithms that have
been referred to in the body of this thesis. The algorithms described herein appear
in chapter order and are prefaced with a brief description. The description has been
included for the purpose of providing context if the algorithms are read without the
chapter to which they belong.

C.1 Interacting Episodes

The algorithms described in this section are supported by the text in Chapter 5 and is
organised in a similar way. As such it contains two sections; the first (Section C.1.1)
dealing with the discovery of frequent episodes and the second (Section C.1.2) with the
discovery of any interactions that they (frequent episodes) may contain.

C.1.1 Frequent Episodes

This algorithm is the starting point for the process of not only episode discovery, but
also interaction discovery. It is called after the data has been read and all constraints
have been set. The major constraints at this point are the length of the episodes to be
discovered and the support at which they will be deemed frequent. It terminates when
no more frequent episodes are discovered, and hence no candidates can be generated, or
when the maximum length episode is reached. At this point a simple pruning algorithm
is applied, to ensure only closed frequent episodes remain, and the results from this
are then able to be used in the next phase of the process. If the requirement that
interactions be discovered in parallel has been chosen then this process is carried out,
using Algorithm C.2, as indicated at line 17 in Algorithm C.1.

198
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Algorithm C.1 Find Frequent Closed Episodes.
Require: a sequence S, of tokens t, a lookahead l and a minimum support σ
Ensure: the collection F(S, l, σ) of frequent closed episodes Fce and an interaction

list, Il.
1: procedure Find Frequent Closed Episodes(S, l, σ)
2: find C1 := {α ∈ T | |α| = 1 } ;
3: i := 0 ; found := true
4: while (i++ < l and found) do

5: for (j := 0; j < |S| − i+ 1; j++) do

6: α := Sj , . . . , Si+j

7: δ := (|S| − |α|+ 1)× σ;
8: if (i > 1) then

9: if (αk ∈ Fk | αk = 〈t1 . . . ti−1〉) then

10: add α to Cj

11: end if

12: else

13: add α to Cj

14: end if

15: end for

16: found := Fi 6= ∅ where Fi := { ∀ α ∈ Cj | frequency (α, S, l) ≥ δ }
17: /* call to Algorithm C.2 using (F1..i) as the parameter
18: if parallel discovery is required */
19: end while

20: Il := createInteractionList(Fe) /* replica of Fe, without zero length trees */
21: Fce := getClosedSetEpisodes(Fe)
22: end procedure
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C.1.2 Frequent Interactions

The following algorithm, Algorithm C.2, acts a wrapper to the main algorithm for the
detection of relationships, and after the return from the task of relationship discovery,
initiates the removal of any duplicate inverse relationships and prunes according to any
user defined constraints. The constraints include a count, or a sub-episode length.

Algorithm C.2 Find Relationships.
Require: a collection of frequent closed episodes, Fce, and an interaction list, Il and

a relationship type, rel type.
Ensure: the collection of frequent interactions Fr.
1: procedure findRelationships(Fce)
2: for (i := 0; i < Fce.size(); i++) do

3: TreeMap < String, Integer > beta := Fce.get(i)
4: int size := (beta.firstKey()).length()
5: for (j := 0; j < size− 1; j++) do

6: TreeMap < String, Integer > alpha = Il.get(j)
7: for all (String episode : beta.keySet()) do

8: for all (String sub episode : alpha.keySet()) do

9: findAnyRelationships(episode,sub episode,beta.get(episode),rel type)
/* Algorithm C.3 */

10: end for

11: end for

12: end for

13: end for

14: removeDuplicateInverseRelationships(rel type)
15: pruneCandidateInteractions()
16: end procedure

The next algorithm, Algorithm C.3, locates the endpoints and midpoints of the fre-
quent sub-episode passed as a parameter and those of the remainder. A determination
is then made regarding the class of interaction to which they belong and they are then
added to the appropriate candidate interaction set.
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Algorithm C.3 Finds any relationships that exist between two events.
Require: an episode e1 and an episode e2, |e2| < |e1|
Ensure: any temporal relationship θr(e2, e1− e2)∨ψw[p](ei, ej) that exists is added to

the candidate interaction list, CIr, or return if none.
1: procedure findAnyRelationships(String e1, String e2, int count)
2: if (e2 * e1) then

3: return
4: else

5: int[ ] positions := e1start , e1mid
, e1end

, e2start , e2mid
, e2end

6: end if

7: determine θr(e2, e1 − e2) ∨ ψw[p](ei, ej) and add it to CIr with count
/* This is achieved by comparisons between the start, mid and endpoints of the
two sub episodes and a lookup for the relevant set of constraints that is produced.
These could be Allen, Table 3.1, or Midpoint, Table 4.3, relationships */

8: end procedure

Algorithm C.4 prunes the candidate interaction list using the user defined interac-
tion support and produces a list of interactions that is frequent with respect to this
metric, and any constraint with respect to the sub-episode lengths.

Algorithm C.4 Prune Candidate Interactions.
Require: a list of candidate relationships, CIr and a min interaction supp, ϕ
Ensure: a list of frequent relationships Fr , where θr(ei, ej)∨ψw[p](ei, ej) ∈ R | ξ ≥ ϕ
∧|ei|, |ej | ≥ min sub-episode len

1: procedure Prune Candidate Interactions

2: for (i := 0; i < CIr.size(); i++) do

3: θr := CIr(i)
4: ξ =

[
frequency θrk∑
k frequency |θrk

|

]
5: if (ξ ≥ ϕ) then

6: add θr to Fr

7: end if

8: end for

9: return Fr

10: end procedure
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C.2 Timing Marks

Algorithm C.5 is the main algorithm for using timing marks. The algorithm is called
post episode discovery and therefore contains any timing tokens that may have been
chosen – since the user has a choice of whether timing marks are used. The algorithm
uses the timing mark heuristic for pruning the frequent episodes, which may include
the options exactly or up to and including a certain number, and those that remain still
contain the timing mark. This differs from algorithms that employ a ‘don’t care’ type
token , for example the work by Huang et al. (2004), since it may be the case that the
interest is in both reporting the timing mark token, and its relevance to the reporting
of the ‘speed’ of a frequent episode even if it (the timing mark) is not reported itself.

Algorithm C.5 Algorithm for using timing marks in episode discovery.
Require: A set of frequent sequences that are to be pruned in accordance with the

timing mark heuristic.
Ensure: the collection of frequent sequences according to the timing mark constraints.
1: procedure pruneForTimingMarks(ArrayList aList)
2: for (i := 0; i < aList.size(); i++) do

3: TreeMap tm := aList.get(i);
4: TreeMap clTm := tm.clone();
5: for all (String cand : clTm.keySet()) do

6: int numMarks = countTimingMarks(cand);
7: if (exactly selected) then

8: if (numMarks 6= maxMarks) then

9: tm.remove(cand);
10: end if

11: else

12: if (numMarks > maxMarks) then

13: tm.remove(cand);
14: end if

15: end if

16: end for

17: end for

18: end procedure
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Algorithm C.6 is the algorithm that removes the timing marks from the frequent
episodes when they are not required to be reported. Since there is a need to visualise
the frequent episodes in a tree structure (see Figure B.2) it is necessary once they have
been removed that the episode be reassigned to the correct node.

Algorithm C.6 Removes the timing marks from the frequent episodes and reassigns
them to the correct output containers.
Require: a list of frequent episodes that have been pruned for the required number of

timing marks.
Ensure: the required frequent episodes without timing marks.
1: procedure removeAllTimingMarks(ArrayList aList)
2: ArrayList modList := new ArrayList();
3: for all (TreeMap tmap : aList) do

4: TreeMap modTree := new TreeMap();
5: for all (String cand : tmap.keySet()) do

6: String newCand := removeTimingMarks(cand);
7: if (!newCand.equals(“”)) then

8: modTree.put(newCand, tmap.get(cand));
9: end if

10: end for

11: modList.add(modTree);
12: end for

13: frequentList := reassignEpisodes(modList);
14: end procedure
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Höppner, F. (2001a), ‘Discovery of temporal patterns – learning rules about the quali-
tative behaviour of time series’.
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